• 제목/요약/키워드: Nickel content

검색결과 245건 처리시간 0.028초

Relationship Between pH and Temperature of Electroless Nickel Plating Solution

  • Nguyen, Van Phuong;Kim, Dong-Hyun
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2018년도 춘계학술대회 논문집
    • /
    • pp.33.1-33.1
    • /
    • 2018
  • pH is expressed mathematically as $pH=-{\log}[H^+]$, is a measure of the hydrogen ion concentration, [$H^+$] to specify the acidity or basicity of an aqueous solution. The pH scale usually ranges from 0 to 14. Every aqueous solution can be measured to determine its pH value. The pH values below 7.0 express the acidity, above 7.0 are alkalinity and pH 7.0 is a neutral solution. The solution pH can be determined by indicator or by measurement using pH sensor, which measuring the voltage generated between a glass electrode and a reference electrode according to the Nernst Equation. The pH value of solutions depends on the temperature and the activity of contained ions. In nickel electroless plating process, the controlled pH value in some limited ranges are extremely important to achieve optimal deposition rate, phosphorus content as well as solution stability. Basically, nickel electroless plating solution contains of $Ni^{2+}ions$, reducing agent, buffer and complexing agents. The plating processes are normally carried out at $82-92^{\circ}C$. However, the change of its pH values with temperatures does not follow any rule. Thus, the purpose of study is to understand the relationship between pH and temperature of some based solutions and electroless nickel plating solutions. The change of pH with changing temperatures is explained by view of the thermal dynamic and the practical measurements.

  • PDF

트리에탄올아민을 착화제로 사용한 무전해 니켈도금욕에서의 석출물의 조성 및 기계적 성질 (Composition and Mechanical Properties of Nickel Deposit Obtained from Electroless Nickel Plating Bath Contained Triethanolamine as Complexing Agent)

  • 여운관;문인형
    • 한국표면공학회지
    • /
    • 제19권2호
    • /
    • pp.31-43
    • /
    • 1986
  • The properties of the electroless nickel deposit mainly depends on the pH of the bath, the plating temperature, and the molar ratio of nickel to hypophosphite but they are also affected by its formulation and concentration of complexing and buffering agents. According to changeing the concentration of triethanolamine and boric acid, phosphorous contents, microsturcture, crystalline, hardness and wear resistance of deposits obtained from ammoniacal alkaline bath were investigated by EPMA, differential thermal analyser, X-ray diffractometer and wear tester. The results are as follows; (1) Increasing concentration of triethanolamine in the bath, the deposits is slightly inclined to increase its phosphorous content(3.7% P). (2) In the as-plated state, the deposits are not crystallized state but they are thermally unstable phase, and they are crystallized with precipitating $Ni_3P$ at 400$^{\circ}C$. (3) The deposit containing 2.3% P has higher hardness value in the as plated and heat treated state at below 300$^{\circ}C$ than those of 3.7% phosphorous deposit (1090Hk). But in the case of heat treating at 400$^{\circ}C$, the former has lower hardness value (1000Hk) than the latter and has remarkably Ni(III) orientation by heat treatment. (4) The 3.7% phosphorous deposit heat treated at 400$^{\circ}C$ has better wear resistance than hard chromium plating.

  • PDF

전기도금법을 이용한 니켈-철 박막의 물성과 자성 조절 (Control of Material Properties and Magnetism of Electroplated Nickel-iron Thin Films)

  • 서호영;남경호;홍기민
    • 한국자기학회지
    • /
    • 제22권2호
    • /
    • pp.42-44
    • /
    • 2012
  • 니켈-철 합금 박막의 성분을 연속적으로 변화시키는 방법을 조사하였다. 일정한 전해액에 가해지는 도금 전류와 전압의 변화에 따라 박막 내 니켈과 철의 상대적 함유량의 조절이 가능했는데, 그 결과 도금 박막의 보자력, 각형비 및 포화자기장이 변화하였다. 정전류도금과 정전압 도금 방법으로 박막 내 철의 함유량을 증가시킴에 따라 박막의 입도는 증가하였고 보자력은 감소하는 경향을 나타내었다.

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • 제12권4호
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

고니켈 삼원계 층상구조 양극 물질의 잔류 리튬 제어를 위한 코팅 기술 연구 동향 (Research Trends in Coating Strategies for Residual Lithium Control in High-Nickel Li(NixCoyMn1-x-y)O2 Cathodes)

  • 송의연;이은지;이지은
    • 공업화학
    • /
    • 제35권3호
    • /
    • pp.182-191
    • /
    • 2024
  • Li(NixCoyMn1-x-y)O2 (NCM)은 전기 자동차 시장의 확대, 더 높은 용량과 긴 수명, 저렴한 가격을 충족하는 리튬이온 배터리 개발을 위해 집중적으로 개발되고 있는 양극재이다. 기존의 NCM을 발전시킨 고니켈 NCM (high-nickel NCM)은 니켈 함량을 80% 이상으로 높임으로써 높은 에너지 밀도로 개선된 성능과 원가가 높은 코발트의 감소로 가격 경쟁력을 확보하였다. 이러한 고니켈 NCM은 높아진 니켈의 함유량 때문에 잔류 리튬(residual lithium) 문제가 커지고, 이는 배터리 성능 저하와 안정성에 문제를 야기한다. 잔류 리튬을 제거하는 방식은 세척(washing), 도핑(doping), 코팅 (coating) 등의 여러 방식이 있지만, 본 논문에서는 잔류 리튬을 없애고, NCM의 성능 향상 및 안정성을 증가시키는 코팅에 대한 다양한 개발 동향을 중점적으로 최근 연구를 살펴보고자 한다.

해양플랜트용 500 MPa급 후판강의 모재 및 HAZ의 미세조직과 기계적 특성의 상관관계 (Correlation between Microstructure and Mechanical Properties of Base Metal and HAZ of 500 MPa Steel Plates for Offshore Platforms)

  • 박지원;조성규;조영욱;신건철;권용재;이정구;신상용
    • 한국재료학회지
    • /
    • 제30권3호
    • /
    • pp.123-130
    • /
    • 2020
  • In this study, two types of thick steel plates are prepared by controlling carbon equivalent and nickel content, and their microstructures are analyzed. Tensile tests, Vickers hardness tests, and Charpy impact tests are conducted to investigate the correlation between microstructure and mechanical properties of the steels. The H steel, which has high carbon equivalent and nickel content, has lower volume fraction of granular bainite (GB) and smaller GB packet size than those of L steel, which has low carbon equivalent and nickel content. However, the volume fraction of secondary phases is higher in the H steel than in the L steel. As a result, the strength of the L steel is higher than that of the H steel, while the Charpy absorbed energy at -40 ℃ is higher than that of the L steel. The heat affected zone (HAZ) simulated H-H specimen has higher volume fraction of acicular ferrite (AF) and lower volume fraction of GB than the HAZ simulated L-H specimen. In addition, the grain size of AF and the packet sizes of GB and BF are smaller in the H-H specimen than in the L-H specimen. For this reason, the Charpy absorbed energy at -20 ℃ is higher for the H-H specimen than for the L-H specimen.

Nickel dust-induced occupational contact dermatitis by welding and grinding work in shipyard workers: a report of nine cases

  • Daehwan Kim;A Ram Kim;Hanjun Kim;Sunghee Lee;Byeonghak Seo;Ho Seok Suh;Chang Sun Sim;Heun Lee;Cheolin Yoo
    • Annals of Occupational and Environmental Medicine
    • /
    • 제34권
    • /
    • pp.7.1-7.10
    • /
    • 2022
  • Background: Occupational skin diseases are skin conditions that occur or worsen in relation to work and known to be the second most common type of occupational disease affecting individuals in the United States. In Korea, epidemiological reports related to occupational skin diseases are rare. But, no cases of occupational contact dermatitis caused by welding and grinding work have been reported previously. Case presentation: Nine male workers working in the production department for liquefied natural gas (LNG) ships in Ulsan complained of erythematous papules/patches and itching in various areas of the body after welding and grinding work. The work environment monitoring report revealed that the amount of nickel dust exceeded the time weighted average (TWA) and poor local ventilation status. Based on the symptoms and the overall results of surveys, several tests, and work environment monitoring report, the 2 workers who had positive patch-test reactions to nickel were diagnosed with nickel dust-induced allergic contact dermatitis. The other 7 workers were diagnosed that there was a high probability that they had nickel dust-induced irritant contact dermatitis. The 2 workers who had nickel dust-induced allergic contact dermatitis were recommended to switch their jobs. Conclusions: Nickel is one of the most common cause of allergic contact dermatitis. In this case, the dust was assumed to be created by welding work with a high nickel content new welding rod and subsequent grinding work, and the concentration of this dust exceeded the time weighted average. Thus, it is thought that the nickel dust may have caused contact dermatitis through continuous contact with the workers' exposed skin in a poorly ventilated space. Currently, several domestic shipbuilding companies are manufacturing LNG tankers using a new construction method. Consequently, it is highly likely that similar cases will occur in the future, which makes this case report meaningful.

니켈도금기술을 이용만 알칼리형 연료전지용 Ni-PTFE전극의 개발 (Preparation of Ni-PTFE Electrode using Nickel Plating for Alkaline Fuel Cell)

  • 김재호;이영석
    • 한국수소및신에너지학회논문집
    • /
    • 제20권4호
    • /
    • pp.291-299
    • /
    • 2009
  • Ni-plated polytetrafluoroethylene(Ni-PTFE) particles($25{\mu}m$, $500{\mu}m$) were prepared by using nickel electroless plating. The Ni content in Ni-PTFE particles increased with increasing the amount of reduction agent. At about 53 wt% Ni content, $25{\mu}m$ Ni-PTFE particles showed conductivity of 320S/m. The Ni-PTFE particles were formed into the Ni-PTFE plate using heat treatment at $350^{\circ}C$ under $10{\sim}1000kg/cm^2$. The Ni-PTFE plate displayed the high conductivity of 5100S/m due to the formation of 3-dimentional Ni network. The plate was used as an electrode in an alkaline fuel cell(AFC). In terms of the current density, the Ni-PTFE electrode having higher Ni content(53 wt%) showed improved performance.

전기도금방법을 이용한 Ni-Diamond 복합도금층 제조에 대한 연구 (The Fabrication of Nickel-Diamond Composite Coating by Electroplating Method)

  • 문윤성;이재호;오태성;변지영
    • 마이크로전자및패키징학회지
    • /
    • 제14권1호
    • /
    • pp.55-60
    • /
    • 2007
  • 니켈-다이아몬드 복합 도금은 회전전극을 이용하여 미세 다이아몬드 입자가 공침된 니켈 복합도금층에 대하여 연구하였다. 복합층의 도금시에 인가한 전류밀도와 전류형태(직류, 펄스)가 도금층의 경도와 표면형상에 미치는 영향에 대하여 알아보았으며 첨가제의 영향에 대하여도 연구하였다. 표면조직을 FESEM을 이용하여 관찰하였으며 Micro Victors를 사용하여 도금층의 경도를 측정하였다. 복합도금층에 다이아몬드가 들어감에 따라 경도는 100%, 마찰저항은 27%까지 증가하였다. 또한 다이아몬드 함량이 20gpl 이상인 경우 경도값이 완만하게 증가하였다.

  • PDF

용접흄 충 금속함량 변화에 관한 연구 (A Study on the Content Variation of Metals in Welding Fumes)

  • 윤충식;박동욱;박두용
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.117-129
    • /
    • 2002
  • Concentration of welding fumes and their components is known to be hazardous to welder and adjacent worker. To determine the generation rates of metals in fumes, $CO_2$ flux cored arc welding on stainless steel was performed in well designed fume collection chamber. Variables were different products of flux cored wire(2 domestic products and 4 foreign products) and input energy(low-, optimal- , high input energy). Mass of welding fumes was determined by gravimetric method(NIOSH 0500 method), and 17 metals were analysed by inductively coupled plasm-atomic emission spectroscopy(NIOSH 7300 method). Flux cored wire tube and flux were analysed by scanning electron microscopy to determine their metal composition. 17 metals were classified by their generation rates. Generation rates of iron, manganese, potassium and sodium were all above 50mg/min at optimal input energy level. Generation rates of chromium and amorphous silica were 25~50mg/min. At 1~25mg/min level, nickel, titanium, molybdenum, and aluminum were included. Copper, zinc, calcium, lead, magnesium, lithium, and cobalt were generated below 1 mg/min. Generation rates of metal components in fumes were influenced by input energy, types of flux cored wire. Flux cored wire was consisted of outer shell tube and inner flux. Iron, chromium, and nickel were the major components of outer tube. Flux contained iron, chromium, nickel, potassium, sodium, silica, and manganese. The use of flux cored wire can increase the hazards by increasing the amounts of fumes formed relative to that of solid wire. The reason might be the direct transfer of elements from the flux, since the flux is fine power. Ratio of metals to the fume of flux cored wire was lower than that of solid wire because non-metal components of flux were transferred. Total metal content of fumes in flux cored arc welding was 47.4(24.3~57.2) percent that is much lower than that of solid wire, 75.9 percent. We found that generation rates of iron, manganese, chromium and nickel, all well known to cause work related disease to welder, increased more rapidly with increasing input energy than those of fumes. To reduce worker exposure to fumes and hazardous component at source, further research is needed to develop new welding filler materials that decrease both the amount of fumes and hazardous components.