• Title/Summary/Keyword: Nickel content

Search Result 246, Processing Time 0.026 seconds

Studies on Heavy Metal Ion Adsorption by Soils. -(Part 1) PH and phosphate effects on the adsorption of Cd, Cu, Ni and Zn by mineral soils with low CEC and low organic carbon content (중금속(重金屬) 이온의 토양(土壤) 흡착에 관한 연구 -(제1보) CEC 및 유기탄소 함량이 낮은 광물토양에의 Cd, Cu, Ni, 및 Zn의 흡착과 이에 미치는 pH 및 인산의 효과-)

  • Kim, Myung-Jong;Motto, Harry L.
    • Applied Biological Chemistry
    • /
    • v.20 no.3
    • /
    • pp.300-309
    • /
    • 1977
  • The information related to the heavy metal pollution in the environment was obtained from studies on the effects of pH, phosphate and soil properties on the adsorption of metal ions (Cd, Cu, Ni, and Zn) by soils. Three soil materials; soil 1 with low CEC (8.2 me/100g) and low organic carbon content (0.34%); soil 2 with high CEC (36.4 me/100g) and low organic carbon content (1.8%) and soil 3 with high CEC (49.9 me/100g) and high organic carbon content (14.7%) were used. Soils were adjusted to several pH's and equilibrated with metal ion mixtures of 4 different concentrations, each having equal equivalents of each metal ion (0.63, 1.88, 3.12 and 4.38 micromoles per one gram soil with and without 10 micromoles of phosphate per one gram soil). Reported here are the results of the equilibrium study on soil I. The rest of the results on soil 2 and soil 3 will be repoted subsequeutly. Generally higher metal ion concentration solution resulted in higher final metal ion concentrations in the equilibrated solution and phosphate had minimal effect except it tended to enhance removal of cadmium and zinc from equilibrated solutions while it tended to decrease the removal of copper and nickel. In soil 1, percentages of added metal ions removed at pH 5.10 were; Cu 97, Ni 69, Cd 63, and Zn 55, while increasing pH to 6.40, they were increased to Cu 90.9, Zn 99, Ni 96, and Cd 92 per As initial metal ion concentration increased, final metal ion concentrations in the equilibrated solution showed a relationship with pH of the system as they fit to the equation $p[M^{++}]=a$ pH+b where $p[M^{++}]=-log$[metal ion concentration in Mol/liter]. The magnitude of pH and soil effects were reflected in slope (a) of the equation, and were different among metal ions and soils. Slopes (a) for metal ions in the aqueous system are all 2. In soil 1 they were; Zn 1.23, Cu 0.99, Ni 0.69 and Cd 0.59 at highest concentration. The adsorption of Cd, Ni, and Zn in soil 1 could be represented by the Iangmuir isotherm. However, construction of the Iangmuir isotherm required the correction for pH differences.

  • PDF

Electromagnetic Interference Shielding Behaviors of Electroless Nickel-loaded Carbon Fibers-reinforced Epoxy Matrix Composites (무전해 니켈도금된 탄소섬유강화 에폭시기지 복합재료의 전자파 차폐특성)

  • Hong, Myung-Sun;Bae, Kyong-Min;Lee, Hae-Seong;Park, Soo-Jin;An, Kay-Hyeok;Kang, Shin-Jae;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.672-678
    • /
    • 2011
  • In this work, carbon fibers were electrolessly Ni-plated in order to investigate the effect of metal plating on the electromagnetic shielding effectiveness (EMI-SE) of Ni-coated carbon fibers-reinforced epoxy matrix composites. The surfaces of carbon fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electric resistance of the composites was tested using a 4-point-probe electric resistivity tester. The EMI-SE of the composites was evaluated by means of the reflection and adsorption methods. From the results, it was found that the EMI-SE of the composites enhanced with increasing Ni plating time and content. In high frequency region, the EMI-SE didn't show further increasing with high Ni content (Ni-CF 10 min) compared to the Ni-CF 5 min sample. In conclusion, Ni content on the carbon fibers can be a key factor to determine the EMI-SE of the composites, but there can be an optimized metal content at a specific electromagnetic frequency region in this system.

Effective Suppression of Methane Production by Chelating Nickel of Methanogenesis Cofactor in Flooded Soil Conditions (담수토양에서 메탄생성반응 보효소 니켈의 킬레이팅에 의한 메탄 생산량의 효과적 저감)

  • Kim, Tae Jin;Hwang, Hyun Young;Hong, Chang Oh;Lee, Jeung Joo;Kim, Gun Yeob;Kim, Pil Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.282-289
    • /
    • 2014
  • BACKGROUND: Methane($CH_4$) is considered as the secondmost potent greenhouse gas after carbon dioxide ($CO_2$). Methanogenesis is an enzyme-mediated multi-step process by methanogens. In the penultimate step, methylated Co-M is reduced by methyl Co-M reductase (MCR) to $CH_4$ involving a nickel-containing cofactor F430. The activity of MCR enzyme is dependent on the F430 and therefore, the bioavailability of Ni to methanogens is expected to influence MCR activity and $CH_4$ production in soil. In this study, different doses of EDTA(Ethylene Diamine Tetraacetic Acid) were applied in flooded soils to evaluate their suppression effect on methane production by chelating Ni of methanogenesis cofactor. METHODS AND RESULTS: EDTA was selected as chelating agents and added into wetland and rice paddy soil at the rates of 0, 25, 50, 75, and $100mmol\;kg^{-1}$ before 4-weeks incubation test. During the incubation, cumulative $CH_4$ production patterns were characterized. At the end of the experiment, soil samples were removed from their jars to analyze total soil Ni and water-soluble Ni content and methanogen abundance. Methane production from 100 mmol application decreased by 55 and 78% in both soils compared to that from 0 mmol. With increasing application rate of EDTA in both soils, water-soluble Ni concentration significantly increased, but total soil Ni and methanogen activities showed negative relationship during incubation test. CONCLUSION: The decrease in methane production with EDTA application was caused by chelating Ni of coenzyme F430 and inhibiting methanogenesis by methyl coenzyme M reductase. Consequently, EDTA application decreased uptake of Ni into methanogen, subsequently inhibited methanogen activities and reduced methane production in flooded soils.

A Comparative Study on the Metallurgical Characteristics of the Iron Knife Using Traditional Iron-Making Method (전통 제철법을 적용하여 제작한 철제 칼의 금속학적 특성에 관한 비교 연구)

  • Cho, Sung Mo;Cho, Nam Chul;Han, Jung Uk
    • Journal of Conservation Science
    • /
    • v.34 no.5
    • /
    • pp.433-442
    • /
    • 2018
  • In this study, metal properties were compared by preparingthree iron knives from steel ingots produced via traditional iron-making, and ingot which jointed the steel of modern times. Metal microscope and SEM-EDS analysis revealed fine ferrite and pearlite structures of the hypo-eutectoid steel of Fe-C alloys. All samples also exhibited martensite on the blade of the knife. By Vicker's hardness analysis, the hardness of the sand iron knife (K1) was 533.38 HV, sand iron-nickel steel knife (K3) was 514.8 HV, and sand iron-carbon steel knife (K2) was 477.02 HV. The mass reduction due to wear was 0.058% for K1, 0.059% for K3, and 0.144% for K2. EPMA(Electron probe micro-analyzer) analysis of the surface pattern of the specimens confirmed that the patterns were exposed due to differences in the content of C or the chemical composition. Additional research on heat treatment processes is needed to increase the abrasion resistance of blades. Traditional steel ingots could produce high-quality steel if combined with nickel steel.

Development of the New Austenitic Stainless Steels by Controlling Primary Solidification Mode (초정응고 형식 제어에 의한 오스테나이트계 스테인리스 신강종의 개발)

  • 정호신
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.2
    • /
    • pp.132-140
    • /
    • 1991
  • The aim of this study was saving of chromium and nickel content in the austenitic stainless steels, SUS 316 and SUS 321. By control of primary solidification mode, new austenitic stainless steels with good weldability, high toughness and corrosion resistance could be developed. The main results obtained were as follows; 1. Hot crack resistance of laboratory melts was good and higher than imported austenitic stainless steel. 2. Cryogenic and room temperature toughness of laboratory melts were high and laboratory melts M-7 to M-9 showed very high toughness than SUS321 imported stainless steel. 3. Intergranular corrosion resistance of laboratory melts was higher than imported stainless steels, SUS316 and SUS321. 4. By this concept of controlling primary solidification mode, could save expensive alloy additives, chromium and nickel.

  • PDF

Influence of Maternal Diet on Mineral and Trace Element Content of Human Milk and Relationships Between Level of These Milk Constituents (수유부의 식이섭취가 모유의 무기질 및 미량원소 함량에 미치는 영향과 모유의 각 무기질 농도 사이의 상관성 연구)

  • 안홍석
    • Journal of Nutrition and Health
    • /
    • v.26 no.6
    • /
    • pp.772-782
    • /
    • 1993
  • This study was conducted to assess the relationships between maternal dietary intakes and milk contents of minerals and trace elements, and the correlation among levels of these milk constituents. Maternal dietary intakes were measured and milk samples were collected at 2∼5 days, 2, 4, 6 and 12 weeks postpartum from 29 lactating women. The results obtained are sumarized as follows: 1) The overall mean nutrient intakes of lactating women in this study were below the recommended allowances and there were extensive individual variations between subjects. 2) Concentrations of minerals and trace elements in matured human milk showed the same range reported from different countries with the exception of calcium, magnesium, manganese and molybdenum which were relatively high. 3) There were no significant relationships between maternal dietary intakes of minerals and the corresponding mineral levels of human milk. In addition, no significant correlations were found between maternal vitamin C intake and the iron contents of milk. These were significant positive correlations between maternal calcium intake and the magnesium level of milk ; between maternal protein intake and the contents of zinc and copper in human milk. Maternal energy intake was negatively correlated with milk sodium level. 4) Pearson correlation coefficient showed positive significant relationships between levels of 17 pairs of various mineral and trace elements : sodium and potassium, iron ; potassium and calcium, phosphors, magnesium, iron, copper, manganese ; calcium and magnesium, iron manganese, molybdenm, nickel ; magnesium and iron, molybdenum ; iron and copper ; nickel and manganese.

  • PDF

Environment Parameters Affecting Heavy Metal Concentration in Sand Collected from Children Playground in Seoul Metropolitan Area

  • An, Hyunsun;Kim, Juhee;Hyun, Seunghun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.193-202
    • /
    • 2013
  • The concentrations of heavy metals such as cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), zinc (Zn), nickel (Ni), and arsenic (As) in sand samples collected from selected children's playground and their correlation with environmental parameters, such as concentration of particulate matter in the atmosphere ($PM_{10}$), apartment age (> 5 years), clay and organic matter contents in sand samples, were analyzed. The average heavy metal concentration in samples was 0.040 mg $kg^{-1}$ for Cd, 0.200 mg $kg^{-1}$ for Cr, 1.75 mg $kg^{-1}$ for Cu, 15.1 mg $kg^{-1}$ for Ni, 3.42 mg $kg^{-1}$ for Pb, 66.7 mg $kg^{-1}$ for Zn and 0.750 mg $kg^{-1}$ for As, all of which were below the environmental regulatory level established by Korea Ministry of Environment. However, in the consideration of direct and oral exposure by children to playground sand, the risk of the concentration range in the samples might be greatly enhanced. Heavy metal concentration in samples collected from high $PM_{10}$ (> $70{\mu}gm^{-3}$) area was slightly greater than in samples from low $PM_{10}$ (< $70{\mu}gm^{-3}$), indicating the contribution of particulate matter in air phase to heavy metal concentration in playground sand samples. The concentrations of both Cd and Pb were the highest in apartments older than 21 years (0.050 mg $kg^{-1}$ and 5.28 mg $kg^{-1}$ for Cd and Pb respectively) and showed positive correlation with apartment age (p<0.01 and p<0.001 for Cd and Pb, respectively). Clay content in playground sands ranged 3.8~11.2% and was positively correlated with heavy metal concentration. Organic matter content was negligible (mostly < 0.1%) and showed poor correlation with heavy metal concentration. In conclusion, concentration of heavy metals in playground sand was found to be predominantly influenced by the apartment age and clay content in sand samples and supplemented by dust deposition of particulate matter ($PM_{10}$) from atmosphere.

Spectral Characteristics associated with Heavy Metal Concentration and Mineral Composition in Cropland and Rice Field Soils from Downstream of an Abandoned Coal Mine (폐석탄광 하류 밭토양 및 논토양의 중금속 함량과 광물조성에 따른 분광학적 특성)

  • Seo, Jihee;Yu, Jaehyung;Koh, Sang-Mo;Lee, Bum Han
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.743-753
    • /
    • 2020
  • This study analyzed heavy metal concentration, mineral composition, and spectral characteristics of heavy metal contaminated soil samples of cropland and rice field located in downstream of abandoned Okdong coal mine. X-ray fluorescence analysis detected heavy metal elements including cadmium, copper, arsenic, lead, zinc and nickel in the soils. Both cropland and rice field samples were severely contaminated with arsenic showing higher concentration over the concerned standard. The pollution index of cropland samples was higher than that of rice field samples. X-ray powder diffraction analysis identified that the mineral composition of cropland and rice field samples is similar with quartz, calcite, kaolinite, illite, smectite, magnetite and hematite. The range of organic matter content were more widely distributed in cropland samples. The spectral analysis showed that the reflectance spectra and the absorption features of cropland and rice field samples were alike. The absorption features that appeared near 490nm and 900nm were attributed to the ferric iron, and clay minerals such as kaolinite and smectite caused the absorption features at 1410nm, 1910nm and 2200nm. The reflectance of the soil spectral decreased with an increase in organic content. The absorption depths of both types of soil samples decreased with higher organic matter content at 490nm and 1916nm as well as higher heavy metal concentration.

IR Study on the Adsorption of Carbon Monoxide on Silica Supported Ruthenium-Nickel Alloy (실리카 지지 루테늄-니켈 합금에 있어서 일산화탄소의 흡착에 관한 IR 연구)

  • Park, Sang-Youn;Yoon, Dong-Wook
    • Applied Chemistry for Engineering
    • /
    • v.17 no.4
    • /
    • pp.349-356
    • /
    • 2006
  • We have investigated adsorption and desorption properties of CO adsorption on silica supported Ru/Ni alloys at various Ru/Ni mole content ratio as well as CO partial pressures using Fourier transform infrared spectrometer (FT-IR). For Ru-$SiO_{2}$ sample, four bands were observed at $2080.0cm^{-1}$, $2021.0{\sim}2030.7cm^{-1}$, $1778.9{\sim}1799.3cm^{-1}$, $1623.8cm^{-1}$ on adsorption and three bands were observed at $2138.7cm^{-1}$, $2069.3cm^{-1}$, $1988.3{\sim}2030.7cm^{-1}$ on vacumn desorption. For Ni-$SiO_{2}$ sample, four bands were observed at $2057.7cm^{-1}$, $2019.1{\sim}2040.3cm^{-1}$, $1862.9{\sim}1868.7cm^{-1}$, $1625.7cm^{-1}$ on adsorption and two bands were observed at $2009.5{\sim}2040.3cm^{-1}$, $1828.4{\sim}1868.7cm^{-1}$ on vacumn desorption. These absorption bands correspond with those of the previous reports approximately. For Ru/Ni(9/1, 8/2, 7/3, 6/4, 5/5; mole content ratio)-$SiO_{2}$ samples, three bands were observed at $2001.8{\sim}2057.7cm^{-1}$, $1812.8{\sim}1926.5cm^{-1}$, $1623.8{\sim}1625.7cm^{-1}$ on adsorption and three bands were observed at $2140.6cm^{-1}$, $2073.1cm^{-1}$, $1969.0{\sim}2057.7cm^{-1}$ on vacumn desorption. The spectrum pattern observed for Ru/Ni-$SiO_{2}$ sample at 9/1 Ru/Ni mole content ratio on CO adsorption and on vacumn desorption is almost like the spectrum pattern observed for Ru-$SiO_{2}$ sample. But the spectrum patterns observed for Ru/Ni-$SiO_{2}$ samples under 8/2 Ru/Ni mole content ratio on CO adsorption and vacumn desorption are almost like the pattern observed for $Ni-SiO_{2}$ sample. It may be suggested surfaces of alloy clusters on the Ru/Ni-$SiO_{2}$ samples contain more Ni components than the mole content ratio of the sample considering the above phenomena. With Ru/Ni-$SiO_{2}$ samples the absorption band shifts may be ascribed to variations of surface concentration, strain variation due to atomic size difference, variation of bonding energy and electronic densities, and changes of surface geometries according to surface concentration variation. Studies for CO adsorption on Ru/Ni alloy cluster surface by LEED and Auger spectroscopy, interation between Ru/Ni alloy cluster and $SiO_{2}$, and MO calculation for the system would be needed to look into the phenomena.

Investigation of Heavy Metals, Residual Pesticides and Nutrient Component from Agricultural By-products Imported as Medium Substrates for Mushroom Cultivation (버섯 재배용 배지 재료로 수입한 농업부산물에서 중금속, 잔류농약, 영양성분 조사)

  • Kim, Jun Young;Lee, Geun Sick;Lee, Chan Jung;Kim, Seong Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.3
    • /
    • pp.217-221
    • /
    • 2017
  • BACKGROUND: For the food safety of cultivated mushroom, information on the safety of agricultural by-products imported as medium substrates for mushroom cultivation is urgently needed. Therefore, this study was performed to detect the presence of heavy metals, residual pesticides, and nutrient component in the imported medium substrates. METHODS AND RESULTS: Six kinds of medium substrates imported from nine countries from 2015 to 2017 were investigated. A mercury analyzer MA-2000 and an inductively coupled plasma spectrometer OPTIMA 7000DV were used to analyze mercury, lead, arsenic, copper, nickel and cadmium. All of these heavy metals were detected at lower level than heavy metal tolerance standard level of by-product fertilizer in Korea. When 246 kinds of residual pesticides were examined by GC and HPLC, imidacloprid, thiamethoxam and carbendazim were detected from Egyptian beet pulp, Indian cottonseed meal and cottonseed hull, respectively. The content of nutrient components (water, crude ash, crude fat, crude protein and crude fiber) varied among imported countries and the medium substrates. CONCLUSION:The presence of heavy metals and residual pesticides in imported medium substrates for mushroom cultivation was confirmed. For the safe production of mushroom, this study shows that imported medium materials for mushroom cultivation need to be managed through continuous monitoring.