• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.028 seconds

TENSILE BOND STRENGTH OF SOLDER JOINT BETWEEN GOLD ALLOY AND NICKEL-CHROMIUM ALLOY (금합금과 Ni-Cr 합금의 납착부 인장강도)

  • Jeong, Jun-Oh;Choi, Hyeon-Mi;Choi, Jeong-Ho;Ahn, Seung-Geun;Song, Kwang-Yeob;Park, Charn-Woon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile strength of solder joint between gold alloy and nickel-chromium alloy. The specimens were made with type III gold alloys and Ni-Cr-Be alloy and Degular Lot 2 solder. Eighteen paired specimens were made, and subdivided into three groups. Group I specimens were gold alloy-gold alloy combination, Group II specimens were gold alloy-Ni-Cr alloy combination, Group III specimens were Ni-Cr alloy-Ni-Cr alloy combination. Solder block were made with solder investment(Degussa A,G, Germany) and stored in room temperature for 24 hours. To reduce the formation of metallic oxide and increase wetting properties, flux was used before preheating and soldering procedure. The specimens were preheated at $650^{\circ}C$ and flux were applied again and gas-oxygen torch was used to solder the specimen. All soldered specimens were subjected to a tensile force in the Instron universal testing machine : the crosshead speed was 1 mm/mim. Tensile strength values of three soldered joint groups were 1. Gold alloy-Gold alloy solder joint : $$48.8kg/mm^2$$ 2. Gold alloy-Ni-Cr alloy solder joint : $$30.9kg/mm^2$$ 3. Ni-Cr alloy-Ni-Cr alloy solder joint : $$31.8kg/mm^2$$ The microscopic examination of fracture site showed cohesive and combination fracture modes in gold alloy specimens, but showed all adhesive fracture modes in Ni-Cr alloy containing specimens.

  • PDF

An in vitro evaluation of the accuracy of four electronic apex locators using stainless-steel and nickel-titanium hand files

  • Gehlot, Paras Mull;Manjunath, Vinutha;Manjunath, Mysore Krishnaswamy
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.6-11
    • /
    • 2016
  • Objectives: The purpose of this in vitro study was to evaluate the accuracy of working length (WL) determination of four electronic apex locators (EALs), namely, Root ZX (RZX), Elements diagnostic unit and apex locator (ELE), SybronEndo Mini Apex locator (MINI) and Propex pixi (PIXI) using Stainless steel (SS) and nickel-titanium (NiTi) hand files. The null hypothesis was that there was no difference between canal length determination by SS and NiTi files of 4 EALs. Materials and Methods: Sixty extracted, single rooted human teeth were decoronated and the canal orifice flared. The actual length (AL) was assessed visually, and the teeth were embedded in an alginate model. The electronic length (EL) measurements were recorded with all four EALs using SS and NiTi files at '0.5' reading on display. The differences between the AL and EL were compared. Results: The results obtained with each EAL with SS and NiTi files were compared with AL. A paired sample t test showed that there was a statistical significant difference between EAL readings with SS and NiTi files for RZX and MINI (p < 0.05). The accuracy of RZX, ELE, MINI and PIXI within ${\pm}0.5 mm$ of AL with SS/NiTi files were 93.3%/70%, 90%/91.7%, 95%/68.3%, and 83.3%/83.3%, respectively. Conclusions: The results of this study indicate that Root ZX was statistically more accurate with NiTi files compared to SS files, while MINI was statistically more accurate with SS files compared to NiTi files. ELE and PIXI were not affected by the alloy type of the file used to determine WL.

Preparation and Characterization of Palladium Nanoparticles Supported on Nickel Hexacyanoferrate for Fuel Cell Application

  • Choi, Kwang-Hyun;Shokouhimehr, Mohammadreza;Kang, Yun Sik;Chung, Dong Young;Chung, Young-Hoon;Ahn, Minjeh;Sung, Yung-Eun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1195-1198
    • /
    • 2013
  • Nickel hexacyanoferrate supported palladium nanoparticles (Pd-NiHCF NPs) were synthesized and studied for oxygen reduction reactions in direct methanol fuel cell. The NiHCF support was readily synthesized by a comixing of $Ni(OCOCH_3)_2$ and equimolar $K_3[Fe(CN)_6]$ solution into DI water under rigorous stirring. After the preparation of NiHCF support, Pd NPs were loaded on NiHCF via L-ascorbic acid reduction method at $80^{\circ}C$. Pd-NiHCF NPs were electrochemically active for oxygen reduction reaction in 0.1 M $HClO_4$ solution. X-ray absorption near edge structure analysis was conducted to measure the white line intensity of Pd-NiHCF to verify the OH adsorption. As a comparison, carbon supported Pd NPs exhibited same white line intensity. This study provides a general synthetic approach to easily load Pd NPs on porous coordination polymers such as NiHCF and can provide further light to load Pd based alloy NPs on NiHCF framework.

Development of Hybrid Metals Coated Carbon Fibers for High-Efficient Electromagnetic Interference Shielding (고효율 전자파 차폐를 위한 이종금속 코팅 탄소섬유 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Lee, Joong Hee
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.191-197
    • /
    • 2020
  • In this study, a hybrid metals such as copper (Cu) and nickel (Ni) coated carbon fibers (Ni-Cu/CFs) was prepared by wet laid method to develop a randomly oriented sheet material for high-efficiency electromagnetic interference shielding with the enhanced durability. The prepared sheet materials show a high electromagnetic interference shielding efficiency of 69.4 to 93.0 dB. In addition, the hybrid metals coated Ni-Cu/CFs sheets showed very high durability with harsh chemical/thermal environments due to the effective corrosive and mechanical resistances of Ni surface. In this context, the Ni-Cu/CF sheet possesses longer service life than the Cu/CF sheet, that is, 1.7 times longer.

Electrical and Luminescent Properties of OLEDs by Nickel Oxide Buffer Layer with Controlled Thickness (NiO 완충층 두께 조절에 의한 OLEDs 전기-광학적 특성)

  • Choi, Gyu-Chae;Chung, Kook-Chae;Kim, Young-Kuk;Cho, Young-Sang;Choi, Chul-Jin;Kim, Yang-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.811-817
    • /
    • 2011
  • In this study, we have investigated the role of a metal oxide hole injection layer (HIL) between an Indium Tin Oxide (ITO) electrode and an organic hole transporting layer (HTL) in organic light emitting diodes (OLEDs). Nickel Oxide films were deposited at different deposition times of 0 to 60 seconds, thus leading to a thickness from 0 to 15 nm on ITO/glass substrates. To study the influence of NiO film thickness on the properties of OLEDs, the relationships between NiO/ITO morphology and surface properties have been studied by UV-visible spectroscopy measurements and AFM microscopy. The dependences of the I-V-L properties on the thickness of the NiO layers were examined. Comparing these with devices without an NiO buffer layer, turn-on voltage and luminance have been obviously improved by using the NiO buffer layer with a thickness smaller than 10 nm in OLEDs. Moreover, the efficiency of the device ITO/NiO (< 5 nm)/NPB/$Alq_3$/ LiF/Al has increased two times at the same operation voltage (8V). Insertion of a thin NiO layer between the ITO and HTL enhances the hole injection, which can increase the device efficiency and decrease the turn-on voltage, while also decreasing the interface roughness.

Nano-thick Nickel Silicide and Polycrystalline Silicon on Polyimide Substrate with Extremely Low Temperature Catalytic CVD (폴리이미드 기판에 극저온 Catalytic-CVD로 제조된 니켈실리사이드와 실리콘 나노박막)

  • Song, Ohsung;Choi, Yongyoon;Han, Jungjo;Kim, Gunil
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.321-328
    • /
    • 2011
  • The 30 nm-thick Ni layers was deposited on a flexible polyimide substrate with an e-beam evaporation. Subsequently, we deposited a Si layer using a catalytic CVD (Cat-CVD) in a hydride amorphous silicon (${\alpha}$-Si:H) process of $T_{s}=180^{\circ}C$ with varying thicknesses of 55, 75, 145, and 220 nm. The sheet resistance, phase, degree of the crystallization, microstructure, composition, and surface roughness were measured by a four-point probe, HRXRD, micro-Raman spectroscopy, FE-SEM, TEM, AES, and SPM. We confirmed that our newly proposed Cat-CVD process simultaneously formed both NiSi and crystallized Si without additional annealing. The NiSi showed low sheet resistance of < $13{\Omega}$□, while carbon (C) diffused from the substrate led the resistance fluctuation with silicon deposition thickness. HRXRD and micro-Raman analysis also supported the existence of NiSi and crystallized (>66%) Si layers. TEM analysis showed uniform NiSi and silicon layers, and the thickness of the NiSi increased as Si deposition time increased. Based on the AES depth profiling, we confirmed that the carbon from the polyimide substrate diffused into the NiSi and Si layers during the Cat-CVD, which caused a pile-up of C at the interface. This carbon diffusion might lessen NiSi formation and increase the resistance of the NiSi.

Ab-initio calculation on Co substitution into NiSi (NiSi에의 Co 치환에 대한 ab-initio 계산)

  • Kim, Yeong-Cheol;Seo, Hwa-Il
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.358-360
    • /
    • 2007
  • Cobalt subtitution on NiSi is investigated by using an ab-initio calculation. Firstly, a relaxed NiSi structure is calculated and the calculated lattice parameters are compared with experimentally determined lattice parameters. The calculated values are smaller than the experimental values by about 2%. As the calculation is based on 0 K, and the experimental measurement is performed at room temperature, those values are in good agreement. Next, a Co atom substitutes a Ni and Si site, respectively, to evaluate the preferable site between them. Co prefers Ni site to Si site. The calculated total energy also indicates that the Co substitution to Ni site stabilizes the NiSi structure. Therefore, the thermal stability of NiSi with Co addition can be achieved by the structure stabilization of NiSi by Co substitution into Ni site of NiSi.

Electroless Nickel Plating (무전해 니켈도금에 대하여(II))

  • 지태촌;여운관
    • Journal of Surface Science and Engineering
    • /
    • v.15 no.2
    • /
    • pp.57-67
    • /
    • 1982
  • Electroless Ni-plating is often utilized in industries due to its physical and mechanical characteristics in contrast to conventional electroplatings. Thus, electroless Ni-plating will be broadly applicated in many fields. However, The physial and mechanical properties of this depositss depend largely on the structure and P content of film and heat treatment. And here discused about the important results of those past research.

  • PDF