• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.029 seconds

Fabrication and Oxidation Behaviors of Nickel-coated Aluminum Powders for Energetic Applications (에너제틱 응용을 위한 Ni코팅된 Al분말소재 제조 및 산화거동)

  • Kim, Kyung Tae;Woo, Jae Yeol;Yu, Ji Hun;Lee, Hye Moon;Lim, Tae Soo;Choi, Yoon Jeong;Kim, Chang Kee
    • Particle and aerosol research
    • /
    • v.10 no.4
    • /
    • pp.177-182
    • /
    • 2014
  • In this study, nickel-coated aluminum (Ni/Al) powders were synthesized for the utilization of energetic applications. Oxide materials present at the surface of Al powders of $45{\mu}m$ in averaged size were removed by using sodium hydroxide(NaOH) solution which is used for controlling pH. Nickel material is coated into the surface of oxide-removed Al powders by electroless-plating process. The microstructure of fabricated Ni/Al powders shows that nickel layers with a few hundreds nm were very homogeneously formed onto the surface of Al powders. The oxidation behavior of Ni/Al exihibit somewhat faster oxidation rate than that of pure Al with surface oxidation. Also, the higher exothermic reaction was observed from the Ni/Al powders. From the result of this, nickel coating is very promising method to obtain highly reactive and safe Al powders for energetic applications.

Composite Coating of Nickel-Boron Nitride-Phosphours and Nickel-Boron Nitride-Boron Ternary System on Aluminum (알루미늄에 니켈-질화붕소-인과 니켈-질화붕소-붕소의 3원계 복합도금)

  • Kuak Woo-Sup;Yoon, Byung-Ha;Kim, Dai-Ryong
    • Journal of Surface Science and Engineering
    • /
    • v.19 no.3
    • /
    • pp.83-91
    • /
    • 1986
  • Codeposited of boron nitride(BN) particle dispersed into electroless nickel-phosphours (Ni-P) and nickel-boron(Ni-B) platings were studied for the purpose of developing the wear resistance and lubricity. BN can be codeposited from electroless nickel plating bath with $NaH_2PO_2$ and $NaBH_4$ as the reducing agents. Most dispersolids were distributed uniformly in the Ni-P and Ni-B matrix. Abrasion loss decreased with increasing amount of codeposits and reached a constant value 2.4 percent by volume percent of BN particle. The wear resistance and the friction coefficient of the heat treated BN composite coatings were improved about three times than that of as-coatings. The BN composite coatings were more wear resistance than hard chromium. Ni-B-BN composite coatings showed lower wear resistance and friction coefficient than Ni-P-BN. The BN content of the deposite was found to be 2.4 v/o for these optium conditions.

  • PDF

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2020
  • In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

A study of Nickel Oxide thin film deposited by DC magnetron and RF sputtering method (DC magnetron 방법과 RF 스퍼터링 방법으로 제작된 Nickel Oxide 박막의 특성 연구)

  • Choi, Kwang-Nam;Park, Jun-Woo;Baek, Seoung-Ho;Lee, Ho-Sun;Kwak, Sung-Kwan;Chung, Kwan-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.441-442
    • /
    • 2007
  • We deposited nickel oxide(NiO) thin films on silicon(Si) substrates at Room temperature and $500^{\circ}C$ using a nickel target by reactive DC and RF sputtering. In addition, we anneal to NiO thin films deposited at room temperature. Using spectroscopic eillipsometry, we obtained optical characteristics of every films. We discussed relations of the optical and structural properties of NiO thin films with the oxygen flow rate, substrate temperature and annealing temperatures. Refraction was decreased and defect was increased when NiO thin films was annealed. We also analyzed the electrical characteristics of NiO films which deposited DC and RF sputtering method.

  • PDF

Characteristics of NiO films prepared by atomic layer deposition using bis(ethylcyclopentadienyl)-Ni and O2 plasma

  • Ji, Su-Hyeon;Jang, Woo-Sung;Son, Jeong-Wook;Kim, Do-Heyoung
    • Korean Journal of Chemical Engineering
    • /
    • v.35 no.12
    • /
    • pp.2474-2479
    • /
    • 2018
  • Plasma-enhanced atomic layer deposition (PEALD) is well-known for fabricating conformal and uniform films with a well-controlled thickness at the atomic level over any type of supporting substrate. We prepared nickel oxide (NiO) thin films via PEALD using bis(ethylcyclopentadienyl)-nickel ($Ni(EtCp)_2$) and $O_2$ plasma. To optimize the PEALD process, the effects of parameters such as the precursor pulsing time, purging time, $O_2$ plasma exposure time, and power were examined. The optimal PEALD process has a wide deposition-temperature range of $100-325^{\circ}C$ and a growth rate of $0.037{\pm}0.002nm$ per cycle. The NiO films deposited on a silicon substrate with a high aspect ratio exhibited excellent conformality and high linearity with respect to the number of PEALD cycles, without nucleation delay.

Enviroment-Friendly Synthesis of Nanocrystalline Nickel Oxide and Its Antibacterial Properties (폐과일껍질을 이용한 친환경 NiO 나노분말 합성 및 향균특성 연구)

  • Yuvakkumar, R.;Song, Jae Sook;Hong, Sun Ig
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2018
  • This study reports an environment-friendly synthetic strategy to process nickel oxide nanocrystals. A mesoporous nickel oxide nanostructure was synthesized using an environmentally benign biomimetic method. We used a natural rambutan peel waste resource as a raw material to ligate nickel ions to form nickel-ellagate complexes. The direct decomposition of the obtained complexes at $700^{\circ}C$, $900^{\circ}C$ and $1100^{\circ}C$ in a static air atmosphere resulted in mesoporous nickel oxide nanostructures. The formation of columnar mesoporous NiO with a concentric stacked doughnuts architecture was purely dependent on the suitable direct decomposition temperature at $1100^{\circ}C$ when the synthesis was carried out. The prepared NiO nanocrystals were coated on cotton fabric and their antibacterial activity was also analyzed. The NiO nanoparticle-treated cotton fabric exhibited good antibacterial and wash durability performance.

Numerical Analysis of the Thermodynamic Stability of Aqueous Cu-Ni-S-H2O System for the Preparation of Thin Copper-Nickel Multi-nano-Layers by Using Pulse Electro-forming

  • Sang Bum, Lee;Yong Choi
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.3
    • /
    • pp.64-68
    • /
    • 2024
  • Thermodynamic solution stability of aqueous copper-nickel-sulfur system was numerically analyzed to produce thin copper-nickel nano-multi-layers by pulse electro-forming. The main program for numerical analysis was written by C# language, which was composed of the data input, numerical calculation, decision and plotting sub-programs. From the thermodynamic data of 32-feasible phases of the Cu-Ni-S-H2O system, the phase stability diagram of the Cu-Ni-S-H2O system was constructed. It revealed the electro-forming condition of the copper and the nickel was VSHE<0.35 for copper deposition, VSHE<-0.24 for nickel deposition, pH=1.0 and 25℃ in the sulfide bath. The coppernickel multi-layers was well produced by electro-forming in the sulfide bath with two-wave pulse voltages of - 0.2VSHE, -0.5 mA/cm2, and 25 seconds for copper deposition and -1.7 VSHE, -50 mA/cm2 and 80 seconds for nickel deposition, at pH=1.0 and 25℃. From TEM and EDX analysis the Cu-Ni multi-layers with about 5 ㎛ thick had the copper-rich phase of about 20 nm in thick and the nickel rich phase of about 25 nm in thick, respectively.

  • PDF

Nickel Silicide Nanowire Growth and Applications

  • Kim, Joondong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.215-216
    • /
    • 2013
  • The silicide is a compound of Si with an electropositive component. Silicides are commonly used in silicon-based microelectronics to reduce resistivity of gate and local interconnect metallization. The popular silicide candidates, CoSi2 and TiSi2, have some limitations. TiSi2 showed line width dependent sheet resistance and has difficulty in transformation of the C49 phase to the low resistive C54. CoSi2 consumes more Si than TiSi2. Nickel silicide is a promising material to substitute for those silicide materials providing several advantages; low resistivity, lower Si consumption and lower formation temperature. Nickel silicide (NiSi) nanowire (NW) has features of a geometrically tiny size in terms of diameter and significantly long directional length, with an excellent electrical conductivity. According to these advantages, NiSi NWs have been applied to various nanoscale applications, such as interconnects [1,2], field emitters [3], and functional microscopy tips [4]. Beside its tiny geometric feature, NW can provide a large surface area at a fixed volume. This makes the material viable for photovoltaic architecture, allowing it to be used to enhance the light-active region [5]. Additionally, a recent report has suggested that an effective antireflection coating-layer can be made with by NiSi NW arrays [6]. A unique growth mechanism of nickel silicide (NiSi) nanowires (NWs) was thermodynamically investigated. The reaction between Ni and Si primarily determines NiSi phases according to the deposition condition. Optimum growth conditions were found at $375^{\circ}C$ leading long and high-density NiSi NWs. The ignition of NiSi NWs is determined by the grain size due to the nucleation limited silicide reaction. A successive Ni diffusion through a silicide layer was traced from a NW grown sample. Otherwise Ni-rich or Si-rich phase induces a film type growth. This work demonstrates specific existence of NiSi NW growth [7].

  • PDF

Evaluation of the alignment efficiency of nickel-titanium and copper-nickel-titanium archwires in patients undergoing orthodontic treatment over a 12-week period: A single-center, randomized controlled clinical trial

  • Aydin, Burcu;Senisik, Neslihan Ebru;Koskan, Ozgur
    • The korean journal of orthodontics
    • /
    • v.48 no.3
    • /
    • pp.153-162
    • /
    • 2018
  • Objective: The aim of this trial was to compare the alignment efficiency and intermaxillary arch dimension changes of nickel-titanium (NiTi) or copper-nickel-titanium (CuNiTi) round archwires with increasing diameters applied sequentially to the mandibular arch. Methods: The initial alignment phase of fixed orthodontic treatment with NiTi or CuNiTi round archwires was studied in a randomly allocated sample of 66 patients. The NiTi group comprised 26 women, 10 men, and the CuNiTi ($27^{\circ}C$) group comprised 20 women, 10 men. The eligibility criteria were as follows: anterior mandibular crowding of minimum 6 mm according to Little's Irregularity Index (LII), treatment requiring no extraction of premolars, 12 to 18 years of age, permanent dentition, skeletal and dental Class I malocclusion. The main outcome measure was the alignment of the mandibular anterior dentition; the secondary outcome measure was the change in mandibular dental arch dimensions during 12 weeks. Simple randomization (allocation ratio 1:1) was used in this single-blind study. LII and mandibular arch dimensions were measured on three-dimensional digital dental models at 2-week intervals. Results: No statistically significant difference was observed between NiTi and CuNiTi according to LII (p > 0.05). Intercanine and intermolar arch perimeters increased in the CuNiTi group (p < 0.001). Inter-first premolar width showed a statistically significant interaction in week ${\times}$ diameter ${\times}$ application (p < 0.05). Conclusions: The effects of NiTi and CuNiTi round archwires were similar in terms of their alignment efficiency. However, the intercanine and intermolar arch perimeters, and the inter-first premolar width changes differed between groups.

Preparation of nanosized NiO powders by mixing acid and base nickel salts and their reduction behavior (Ni 산성염과 Ni 염기성 염의 혼합에 의한 나노 NiO 분말 제조 및 이의 환원 특성)

  • Kim, Chang-Sam;Yun, Dong-Hun;Jeon, Sung-Woon;Kwon, Hyok-Bo;Park, Sang-Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.283-288
    • /
    • 2010
  • Nanosized NiO powder was prepared by mixing an acid nickel salt and a base nickel salt and their reduction behavior was studied. Ni formate was employed as an acid salt and nickel hydroxide and basic nickel carbonate as base salts. One equivalent acid salt was mixed with 9 equivalent base salt. The mixture of the formate and the carbonate produced ~100 run spherical NiO powder by heat treatment at $750^{\circ}C$/2 h, but the mixture of the formate and the hydroxide gave rise to ~100 nm pseudo spherical NiO powder by heat treatment at $600^{\circ}C$/2 h and grew fast to give pseudo cubic crystals of 100~600 run by heat treatment at $750^{\circ}C$/2 h. Reduction by hydrogen gas proceeded much faster for the one with the hydroxide than that with the carbonate to give porous body with well grown necks. Their behavior was studied by analysis of TG/DSC, XRD, and SEM.