• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.032 seconds

Visible light assisted photocatalytic degradation of methylene blue dye using Ni doped Co-Zn nanoferrites

  • Thakur, Preeti;Chahar, Deepika;Thakur, Atul
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.415-426
    • /
    • 2022
  • Nickel substituted cobalt-zinc ferrite nanoparticles with composition Co0.5Zn0.5NixFe2-xO4 (x = 0.25, 0.5, 0.75, 1.0) were synthesized using a wet chemical method named citrate precursor method. Various characterizations of the prepared nanoferrites were done using X-ray powder diffractometry (XRD), Scanning electron microscopy (SEM), UV visible spectroscopy and Fourier transform spectroscopy technique (FT-IR). XRD confirmed the formation of cubic spinel structure of the samples with single phase having one characteristic peak at (311). The value of optical band gap (Eg) was found to decrease with Ni substitution and have values in the range 2.30eV to 1.69eV. A Fenton-type system was created by photocatalytic activity using source of visible light for removal of methylene blue dye. Observations revealed increase in the degradation of methylene blue dye with increasing nickel content in the samples. The degradation percentage was increased from 77.32% for x = 0.25 to 90.16% for x = 1.0 in one hour under the irradiation of visible light. Also, the degradation process was found to have pseudo first order kinetics model. Hence, it can be observed that synthesized nickel doped cobalt-zinc ferrites have good capability for water purification and its degradation efficiency enhanced with increase in nickel concentration.

Analysis of Conductivity Variation and Conduction Mechanism in Bulk NiO Based on Sintering Conditions

  • Ju-Hyeon Lee;Tae-Soo Yeo;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.418-421
    • /
    • 2023
  • Multilayer Ceramic Capacitors (MLCCs) are essential passive components in the electronics industry, known for their high capacitance due to the multilayer structure comprising inner electrodes and dielectric layers. Nickel electrodes are commonly used in MLCCs as the inner electrodes, and to prevent oxidation during the co-firing of the dielectric layers with nickel electrodes, reducing atmosphere is required. However, reducing atmosphere sintering can also induce a reduction of the dielectric, necessitating precise control of oxygen partial pressure. To explore the possibility of using oxide electrodes that do not require reducing atmosphere sintering, we analyze the electrical properties of nickel oxide (NiO) as a potential candidate. As a preliminary study on its use as an alternative inner electrode, the correlation between microstructure and electrical properties of bulk NiO under different sintering conditions was investigated to gain insights into the conduction mechanisms of the material.

Effects of Ni and Si on the Matrix Structure and Graphite Formation in Fe-12Mn-3.5C Alloy (Fe-12Mn-3.5C 계주철(系鑄鐵)에서 기지조직(基地組織)과 흑연석출(黑鉛析出)에 미치는 Ni 및 Si 의 영향)

  • Ra, Hyong-Yong;Son, Won-Tak
    • Journal of Korea Foundry Society
    • /
    • v.3 no.3
    • /
    • pp.174-180
    • /
    • 1983
  • The matrix changes and graphite formation in high manganese cast iron (Fe-12Mn-3.5C) are studied with increasing nickel and silicon content. Also, the decomposition of carbides and graphite precipitation are studied by adequate heat treatment.The results obtained in this work are as follows. 1. In high manganese cast iron, fine flakes graphite appeared by adding 5 wt% nickel and A-type flakes graphite can be obtained by adding 7 wt% nickel. 2. Nodular graphite are obtained by graphite spheroidizing treatment with same melt. 3. In high manganese cast iron containing 7 wt% nickel, full austenitic matrix with nodular graphite can be achieved by water quenching after 10 hours' solution heat treatment at $1050^{\circ}C$ in case of containing 2.0 wt% silicon, and 6 hours' at the same temperature in case of containing 2.5 wt% silicon.

  • PDF

Improvement of Thermal Stability of Nickel Silicide Using Co-sputtering of Ni and Ti for Nano-Scale CMOS Technology

  • Li, Meng;Oh, Sung-Kwen;Shin, Hong-Sik;Lee, Hi-Deok
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.3
    • /
    • pp.252-258
    • /
    • 2013
  • In this paper, a thermally stable nickel silicide technology using the co-sputtering of nickel and titanium atoms capped with TiN layer is proposed for nano-scale metal oxide semiconductor field effect transistor (MOSFET) applications. The effects of the incorporation of titanium ingredient in the co-sputtered Ni layer are characterized as a function of Ti sputtering power. The difference between the one-step rapid thermal process (RTP) and two-step RTP for the silicidation process has also been studied. It is shown that a certain proportion of titanium incorporation with two-step RTP has the best thermal stability for this structure.

Effect of Ultrasonic Wave on the Nickel-Zine Alloy Deposition whit the Variation of Ammonium Chloride Concertration (Ni-Zn 함금도금에서 염화암몬 농도에 따른 초음파의 영향)

  • 양학희;고광진;김재원
    • Journal of Surface Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.168-175
    • /
    • 1988
  • The nickel0zinc allot depositions have been studjen in ammonium chloridw added chloride baths to fine out the effects of ultrasonic irradiation for the electrodeposition processes. The compositions of deposited alloys, the current efficiencies, corrosion resistance and brightness in various conditions of electrodeposition were investigated, in the range of ultrasonic irradiation of 50,500 and 1,000kc/s respectively. The results obtained are as follows; 1. the ratio of nikel to zinc in the deposit increased according 시 the ammonium chloride concentration in irradiated baths. 2. The current efficiencies became also higer in the irradiated bath. 3. Ammonium ions in solution seem to retard formation of zinc hydroxide. 4. The corrsion resistance and brightness of the deposits are dependent upon nickel content of deposits which ranges 10-18%(wt)nickel in the irradiated baths and 11-15%(wt)in ninirradisted baths. 5. The corrosion resistance and brightnes of the deposited are appreciably better in the irradiated baths than in non-irradiated bath with the mole ratio of 3.4(NH+4/Ni+++Zn++).

  • PDF

Selective growth of carbon notubes by patterning nickel catalyst metal (패터닝된 Ni 촉매 금속 위에서의 탄소나노튜브 성장)

  • Bang Y.Y.;Chang W.S.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.473-474
    • /
    • 2006
  • Aligned carbon nanotubes(CNTs) array were synthesized using direct current plasma-enhanced chemical vapor deposition. The nickel microgrids catalyzed the growth of carbon nanotubes which take on the area of the nickel microgrids. Selective growth of areas of nanotubes was achieved by patterning the nickel film. CNTs were grown on the pretreated substrates at 30% $C_2H_2:NH_3$ flow ratios for 10min. Carbon nanotubes with diameters about 20 nanometers and lengths approximately 720 nanometers were obtained. Morphologies of carbon nanotubes were observed by FE-SEM and TEM.

  • PDF

Template Synthesis of New Nickel(Ⅱ) Comlexes of 14-Membered Pentaaza Macrocyclic Ligands: Effects of C-Alkyl and N-Hydroxyalkyl Pendant Arms on the Solution Behaviors of the Complexes

  • 강신걸;최장식;김성진
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.518-523
    • /
    • 1995
  • New square planar nickel(Ⅱ) complexes with various 1-alkyl (4a-4c) and 1-hydroxyalkyl (4d-4f) derivatives of the 14-membered pentaaza macrocycle 8-ethyl-8-nitro-1,3,6,10,13-pentaazacyclotetradecane have been synthesized by two-step metal template condensation reactions of ethylenediamine, nitroethane, formaldehyde, and appropriate primary amines. The nitro group and/or hydroxyl group of 4a-4f are not directly involved in the coordination. The nickel(Ⅱ) complexes exist in coordinating solvents such as MeCN, Me2SO, and H2O as equilibrium mixtures of the square planar [Ni(L)]2+(L=4a-4f) and octahedral species [Ni(L)S2]2+(S=solvent molecule). Although the ligand field strength and redox potentials of the complexes are not affected by the nature of the substituents, the formation of octahedral species for 4d-4f in MeCN is strongly restricted by the hydroxyl group. Synthesis, characterization, and solution behaviors of the nickel(Ⅱ) complexes are described.

Electrochemical Properties of Lithium Batteries with Nickel Sulfide by Ammonium Polysulfide (다황화암모늄에 의해 제조된 황화니켈을 이용한 리튬전지의 전기 화학적 특성 평가)

  • RYU, HO SUK
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.6
    • /
    • pp.612-617
    • /
    • 2021
  • In the case of a metal sulfide electrode, it is used as an anode or cathode active material in a lithium battery. The reason is that the voltage exists between 0.8 and 2.0 V via lithium electrode and the discharge and charge capacity is high. In order to manufacture nickel sulfide for electrode, which are widely used, nano-nickel powder was sulfided using ammonium polysulfide, and single-phase NiS electrodes were manufactured through heat treatment. The prepared NiS electrode had a high initial capacity of 500 mAh/g or more, and was stabilized after 20 cycles to maintain a capacity of 400 mAh/g or more until 100 cycles.

Experimental Investigation of Laser Spot Welding of Ni and Au-Sn-Ni Alloy

  • Lee, Dongkyoung
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.1-5
    • /
    • 2017
  • Many microelectronic devices are miniaturizing the capacitance density and the size of the capacitor. Along with this miniaturization of electronic circuits, tantalum (Ta) capacitors have been on the market due to its large demands worldwide and advantages such as high volumetric efficiency, low temperature coefficient of capacitance, high stability and reliability. During a tantalum capacitor manufacturing process, arc welding has been used to weld base frame and sub frame. This arc welding may have limitations since the downsizing of the weldment depends on the size of welding electrode and the contact time may prevent from improving productivity. Therefore, to solve these problems, this study applies laser spot welding to weld nickel (Ni) and Au-Sn-Ni alloy using CW IR fiber laser with lap joint geometry. All laser parameters are fixed and the only control variable is laser irradiance time. Four different shapes, such as no melting upper workpiece, asymmetric spherical-shaped weldment, symmetric weldment, and, excessive weldment, are observed. This shape may be due to different temperature distribution and flow pattern during the laser spot cutting.

The Effect of Heat Sterilization on the Surface Topography and the Tensile Properties in Various Nickel Titanium Wires Including a Korean Product (열멸균과정이 nickel titanium호선의 기계적 성질과 표면상태에 미치는 영향)

  • Kim, Byoung-Ho;Nahm, Dong-Seok;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.927-935
    • /
    • 1998
  • The purpose of this study is to investigate the changes of mechanical properties and surface topography of various nickel titanium wires after heat sterilization for recycling with quantitative method. The materials used were four kinds of nickel titanium orthodontic wires including a Korean product. Experimental specimens were treated with two kinds of heat sterilization methods ; dry heat ($180^{\circ}C$, 60min) and autoclave ($121^{\circ}C$, 15-20psi, 30min). Mechanical properties were evaluated by tensile test with Instron 4466 (load cell capacity:.1000 kg, cross head speed:5mm/min, grip distince:40mm in room temperature). Surface topography of various wires was compared with each other qualitatively by using scanning electron microscopy and quantitatively by using profilometer. The findings were analyzed statistically with student t-tests. The results were as follows; 1. Neither method of heat sterilization had any effects on tensile properties of the nickel-titanium wires used in this experiment. 2. Before heat sterilization, the surface smoothness was highest in Optimalloy, followed by Align and Sentalloy, with NiTi showing the lowest smoothness value. 3. In surface topography, Align and Optimalloy were not influenced by heat sterilization. NiTi, on the other hand, had increased roughness after dry heat sterilization and Sentalloy showed the same tendency after each of the two heat sterilization procedures.

  • PDF