• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.029 seconds

Prosthetic misfit of implant-supported prosthesis obtained by an alternative section method

  • Tiossi, Rodrigo;Falcao-Filho, Hilmo Barreto Leite;De Aguiar, Fabio Afranio Junior;Rodrigues, Renata Cristina Silveira;De Mattos, Maria da Gloria Chiarello;Ribeiro, Ricardo Faria
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.89-92
    • /
    • 2012
  • PURPOSE. Adequate passive-fitting of one-piece cast 3-element implant-supported frameworks is hard to achieve. This short communication aims to present an alternative method for section of one-piece cast frameworks and for casting implant-supported frameworks. MATERIALS AND METHODS. Three-unit implant-supported nickel-chromium (Ni-Cr) frameworks were tested for vertical misfit (n = 6). The frameworks were cast as one-piece (Group A) and later transversally sectioned through a diagonal axis (Group B) and compared to frameworks that were cast diagonally separated (Group C). All separated frameworks were laser welded. Only one side of the frameworks was screwed. RESULTS. The results on the tightened side were significantly lower in Group C ($6.43{\pm}3.24{\mu}m$) when compared to Groups A ($16.50{\pm}7.55{\mu}m$) and B ($16.27{\pm}1.71{\mu}m$) ($P$ <.05). On the opposite side, the diagonal section of the one-piece castings for laser welding showed significant improvement in the levels of misfit of the frameworks (Group A, $58.66{\pm}14.30{\mu}m$; Group B, $39.48{\pm}12.03{\mu}m$; Group C, $23.13{\pm}8.24{\mu}m$) ($P$ <.05). CONCLUSION. Casting diagonally sectioned frameworks lowers the misfit levels. Lower misfit levels for the frameworks can be achieved by diagonally sectioning one-piece frameworks.

Risk Factors for Health and Environmental Disease in Gyeongju, Pohang, and Ulsan (경주, 포항, 울산지역 보건.환경성 질환 위해 인자)

  • Jung, Jong-Hyeon;Choi, Bong-Wook;Moon, Ki-Nai;Seok, Seong-Ja;Kim, Hyun-Gyu;Shon, Byung-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.2
    • /
    • pp.82-94
    • /
    • 2010
  • This study was undertaken in an attempt to provide scientific grounds in explaining the causes of environmental and respiratory diseases resulting from air pollutants in Gyeongju and its neighboring areas. In relation to heavy metals, lead (Pb) was $0.0135{\sim}0.1744\;{\mu}g/m^3$ and high in order of Pohang, Ulsan, and Gyeongju while nickel (Ni) was $0.0023{\sim}0.0115\;{\mu}g/m^3$. The concentrations of heavy metals in the investigated areas did not exceed the environmental standards or Guideline Value of Korea or other countries. However, it is considered necessary to apply intensive control to some heavy metals including cadmium (Cd) that show a relatively high level of hazard. Based on the responses to the survey, measured personal interest in environmental pollution and the basic knowledge of the causes of the respiratory diseases was higher in those with a family history of allergic reactions to metals and bronchial asthma. The incidence of allergic disease was higher in those who are currently in poor health state. In addition, the general knowledge of environmental pollutants was higher in those with higher educational level and those with a higher interest in environmental pollution. Personal interest in environmental pollution was higher in those with higher basic knowledge of environmental pollutants. Therefore, it is necessary to increase the awareness through better education and campaigns on environmental pollution.

Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS) (연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석)

  • KIM, HYOUNGSEOK;HONG, SEOKJIN;HUR, TAK
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.2
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

Effect of Heavy Metal Contents in Upland Soil on the Uptake by Green onion and Lettuce and their growth (토양중(土壤中) 중금속함량(重金屬含量)이 파, 상치의 중금속흡수(重金屬吸收) 및 생육(生育)에 미치는 영향(影響))

  • Kim, Bok-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.14 no.3
    • /
    • pp.253-262
    • /
    • 1995
  • The heavy metal contents of soils which had been contaminated with mine residues and green onion and lettuce which were grown on these soils were analyzed. The results obtained are summarized as follows: 1. Heavy metal contents in the soil where green onion and lettuce died back or were poor in growth were unusually high. 2. Heavy metal contents in the plants grown in the soil of high level of metals were also high, in the order of root > leaf > stem. In case of Mn, however, the content was the highest in the leaf. 3. Contents of Cd, Cu, Zn and Ni in soil were positively correlated with those in plant. In case of Pb, there was no consistent relationship between the contents in soil and plant. 4. Even in the soils where plant growth appeared to be normal the heavy metal contents both in soil and in plant were higher than the national average.

  • PDF

Low-Cycle Fatigue in Ni-Base Superalloy IN738LC at Elevated Temperature (니켈기 초내열합금 IN738LC의 고온 저주기피로 거동)

  • Hwang, Kwon-Tae;Kim, Jae-Hoon;Yoo, Keun-Bong;Lee, Han-Sang;Yoo, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1403-1409
    • /
    • 2010
  • For many years, high-strength nickel-base superalloys have been used to manufacture turbine blades because of their excellent performance at high temperatures. The prediction of fatigue life of superalloys is important for improving the efficiency of the turbine blades. In this study, low cycle fatigue tests are performed for different values of total strain and temperature. The relations between strain energy density and number of cycles before failure occurs are examined in order to predict the low cycle fatigue life of IN738LC super alloy. The results of low cycle fatigue lives predicted by strain energy methods are found to coincide with experimental data and with the results obtained by the Coffin-Manson method.

Studies on the Active Materials of Alkaline Storage Battery. On Cadmium Electrode (알칼리 축전지의 활물질에 관한 연구. 카드뮴 전극에 관하여)

  • Ju Seong Lee;Choong Yeoul Joo;Park, Su Gil
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.5
    • /
    • pp.325-330
    • /
    • 1981
  • The electrochemical behavior of cadmium electrode for the nickel-cadmium battery system has been studied by cyclic voltammetry, controlled potential electrolysis and X-ray diffraction method. Cathodic polarization curve for cadmium hydroxide electrode prepared by electrochemical pretreatment of metallic cadmium showed two peaks. It has been found that cadmium hydroxide was reduced to cadmium metal at the first peak potential, whereas very activated metal of cadmium which was strongly oriented (002) rather than (101) was formed at the second peak potential. It was also found that the cadmium formed at the second peak potential reacted rapidly with oxygen. Therefore, it could be presumed that the cadmium recombination reaction with the oxygen was chemical, and could be represented as $2Cd + O_2 + 2H_2O\;{\longrightarrow}\;2Cd(OH)_2$.

  • PDF

Heavy metals and pollution index of agricultural soils around industrial complexes in the Jeon-Buk regions of Korea

  • Suwanmanon, Sorakon;Kim, Ki In
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.799-811
    • /
    • 2019
  • The aim of this study was to evaluate heavy metal contamination and pollution index of agricultural soils around industrial complexes in the Jeon-Buk Regions of Korea. Soil samples near industrial complexes in 2017 were collected at two depths (0 - 15 and 15 - 30 cm) within a 500- and 1000-meter radius before planting. Eight heavy metals (Arsenic (As), cadmium (Cd), chromium (Cr), Cupper (Cu), nickel (Ni), lead (Pb), mercury (Hg) and zinc (Zn)) and the pollution index (PI), geoaccumulation index (Igeo) and soil pollution index (SPI) were evaluated based on soil contamination warning standard (SCWS). Overall, the heavy metal concentrations were below the SCWS. The PI ranged from 0.1 to 0.9 and categorized into Group 1 which is not polluted with any heavy metals. The average Igeo values of all the soil samples ranged from - 2.56 to 3.22. The Igeo values of Cd and Hg may not represent well the pollution index because the heavy metal concentrations in the soil is lower compared to the SCWS. In fact, based on the heavy metal concentrations, the Igeo for monitored soils should be categorized into Group 1, uncontaminated to moderately contaminated. However, the Igeo of Cd and Hg are classified into heavily contaminated. These results suggest that for calculating the Igeo, the heavy metal concentration and background concentration should be used very carefully if the heavy metal concentration in the soil is lower than the background concentration. SPI for all the soil samples ranged from 0.00 to 0.11 which indicates no heavy metal pollution was observed.

Synthesis of Three-Dimensional Graphene Using Porous Nickel Nanostructure (다공성 니켈 나노 구조체를 이용한 3차원 그래핀의 합성)

  • Song, Wooseok;Myung, Sung;Lee, Sun Sook;Lim, Jongsun;An, Ki-Seok
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.151-155
    • /
    • 2016
  • Graphene has been a valuable candidate for use as electrodes for supercapacitors. In order to improve the surface area of graphene, three-dimensional graphene was synthesized on porous Ni nanostructure using thermal chemical vapor deposition and microwave plasma chemical vapor deposition. The structural and chemical characterization of synthesized graphene was performed by scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. It was confirmed that three-dimensional and high-crystalline multilayer graphene onto various substrates was synthesized successfully.

A Technical and Economic Evaluation of Cobalt-rich Manganese Crusts (심해저 망간각 개발의 경제성 평가)

  • Park, Se-Hun;Yang, Hee-Cheol
    • Ocean and Polar Research
    • /
    • v.31 no.2
    • /
    • pp.167-176
    • /
    • 2009
  • Cobalt-rich manganese crusts on seamounts have received an increasing amount of attention as future resources for Co, Ni, Cu, and Mn. A dearth of detailed information regarding the relevant distribution characteristics, mining technologies, and ore processing technologies, however, has precluded potential evaluations of the technical and economic advantages of these crusts. In the past 4 years, Korea has undertaken a survey of the cobalt-rich manganese crusts in and around the Magellan Seamount and Mid-Pacific Mountains. This paper introduces the preliminary feasibility study of the distribution features and R&D results centered around the development of the cobalt-rich manganese crusts. The evaluation model was developed by modifying the model for the manganese nodules. In addition to considering the geological and geophysical differences between the manganese nodules and the cobalt-rich manganese crusts, an ore dressing subsystem was installed in the model. The mining subsystem is composed of a self-propelled collector--a pipeline with submersible hydraulic pumps for crust lifting. The smelting and chlorine leach method was selected for metallurgical processing. The production scales were established at 2,500t/y of cobalt metal. The production of three metals--cobalt, nickel, and copper--was considered in terms of metallurgical processing. The economic feasibility analyses demonstrated that the payback period was 11.4 years, the NPV was 36M$, and the IRR was 9.6% with the economic factors in the case of a cobalt price of US$ 25/lb. It was also demonstrated in this study that the payback period was 8.6 years, the NPV was 154M$, and the IRR was 14.0% in the case of a cobalt price of US$ 30/lb. This indicates that the approach under consideration appears to offer greater potential given the predicted metal prices.

Continuous dialysis of selected salts of sulphuric acid

  • Bendova, Helena;Snejdrla, Pavel;Palaty, Zdenek
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.171-179
    • /
    • 2010
  • The transport of selected salts of sulphuric acid (cobalt, copper, iron(II), manganese, nickel and zinc sulphate) through an anion-exchange membrane Neosepta-AFN was investigated in a counter-current continuous dialyzer at various salt concentrations and volumetric liquid flow rates. The basic transport characteristics - the rejection coefficient of salt and the permeability of the membrane - were calculated from measurements at steady state. The salt concentration in model mixtures was changed in the limits from 0.1 to 1.0 kmol $m^{-3}$ and the volumetric liquid flow rate of the inlet streams was in the limits from $8{\times}10^{-9}$ to $24{\times}10^{-9}m^3\;s^{-1}$. Under the experimental conditions given, the rejection coefficient of salts tested was in the range from 65% to 94%. The lowest values were obtained for iron(II) sulphate, while the highest for copper sulphate. The maximum rejection of salt was reached at the highest volumetric liquid flow rate and the highest salt concentration in the feed. The permeability ($P_A$) of the Neosepta-AFN membrane for the individual salts was in the range from $0.49{\times}10^{-7}m\;s^{-1}$ to $1.8{\times}10^{-7}m\;s^{-1}$ and it can be described by the following series: $P_{FeSO_4}$ < $P_{NiSO_4}$ < $P_{ZnSO_4}$ < $P_{CoSO_4}$ < $P_{MnSO_4}$ < $P_{CuSO_4}$. The permeability of the membrane was strongly affected by the salt concentration in the feed - it decreased with an increasing salt concentration.