• Title/Summary/Keyword: Nickel (Ni)

Search Result 1,524, Processing Time 0.028 seconds

Neutron diagnostics using nickel foil activation analysis in the KSTAR

  • Chae, San;Lee, Jae-Yong;Kim, Yong-Soo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3012-3017
    • /
    • 2021
  • The spatial distribution and the energy spectrum of the neutron yield were investigated with the neutron activation analysis and MCNP simulation was carried out to verify the analysis results and to extend the results to a 3D mapping of the neutron yield distribution in the KSTAR. High purity Ni specimen was selected in the neutron activation analysis. Total neutron yields turned out to be 3.76 × 1012 n/s - 7.56 × 1012 n/s at the outer vessel of the KSTAR, two orders of magnitude lower than those at the inner vessel of the KSTAR, which demonstrates the attenuation of neutron yield while passing through the different structural materials of the reactor. Based on the fully expanded 3D simulation results, 2D cross-sectional distributions of the neutron yield on XY and ZX planes of KSTAR were examined. The results reveal that the neutron yield has its maximum concentration near the center of blanket and decreases with increasing proximity to the vacuum vessel wall.

Template Synthesis and Characterization of Binuclear Nickel(Ⅱ) and Copper(Ⅱ) Complexes of Double-ring Macrocyclic Ligands

  • Shin-Geol Kang;Soo-Kyung Jung;Jae Keun Kweon
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.219-224
    • /
    • 1991
  • New binuclear Ni(Ⅱ) and Cu(Ⅱ) complexes with various alkyl derivatives of 1,2-bis(1,3,6,8,10,13-hexaaza-1-cyclotetradecyl) ethane, in which two fully saturated 14-membered hexaaza macrocyclic subunits are linked together by an ethylene chain, have been synthesized by the one step template condensations of formaldehyde with ethylenediamine and appropriate primary alkyl amines in the presence of the metal ions. Each macrocyclic subunit of the double-ring macrocyclic complexes contains one alkyl pendant arm and has a square planar geometry with a 5-6-5-6 chelate ring sequence. The visible spectra and oxidation properties indicate that the metal-metal interaction of the binuclear complexes are not significant. Synthesis, characterization, and the properties of the complexes are presented.

A Study on Ni-H, Pd-H, and Pt-H Systems by Cluster Orbital Method

  • Lee, Ju-Hyeok;Lee, Keun-Woo;Kim, Ho-Jing
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.225-234
    • /
    • 1993
  • As an application of the cluster orbitals proposed previously, nickel-, palladium-, and platinum-hydrogen systems are studied. Density of states, projected density of states, HOMO levels, and stabilization energies are calculated and compared with those obtained by extended Huckel method for small clusters. These calculations are extended to large clusters to find the size dependence of several physical quantities. Reduced overlap populations are also calculated to clarify the charge transfer phenomena reported earlier. The calculated physical quantities show no dependence on the cluster size. It is also found that the charge transfer occurs due to the intrinsic character of palladium, not due to the edge effect which may be present in small clusters.

Galvanic Corrosion Behavior of Copper Canister

  • Minsoo Lee;Junhyuk Jang;Jin Seop Kim
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.22 no.1
    • /
    • pp.55-66
    • /
    • 2024
  • In this study, we investigated the suppression of the corrosion of cast iron in a copper-cast iron double-layered canister under local corrosion of the copper layer. The cold spray coating technique was used to insert metals with lower galvanic activity than that of copper, such as silver, nickel, and titanium, between the copper and cast iron layers. Electrochemically accelerated corrosion tests were performed on the galvanic specimens in KURT groundwater at a voltage of 1.0 V for a week. The results revealed that copper corrosion was evident in all galvanic specimens of Cu-Ag, Cu-Ni, and Cu-Ti. By contrast, the copper was barely corroded in the Cu-Fe specimens. Therefore, it was concluded that if an inactive galvanic metal is applied to the areas where local corrosion is concerned, such as welding parts, the disposal canister can overcome local or non-uniform corrosion of the copper canister for long periods.

Study of Mg2Ni1-xFex Alloys by Mössbauer Resonance (Mössbauer 공명에 의한 Mg2Ni1-xFex 합금의 연구)

  • Song, MyoungYoup
    • Journal of Hydrogen and New Energy
    • /
    • v.10 no.2
    • /
    • pp.119-130
    • /
    • 1999
  • After preparing $Mg_2Ni_{1-x}{^{57}}Fe_x$(x=0.015, 0.03, 0.06, 0.12 and 0.24) alloys, they were studied by $M{\ddot{o}}ssbauer$ resonance. The $M{\ddot{o}}ssbauer$ spectra of x=0.015 and 0.03 alloys exhibit two doublets (doublet 1, 2). That of x=0.06 alloys shows two doublets (doublet 1,2) and one six-line, and those of x=0.12 and 0.24 alloys have only one six-line. The doublet 1 for x=0.015, 0.03 and 0.06 alloys is considered to result from a fraction of Fe in excess showing a superparamagnetic behavior. The doublet 2 is considered to result from the Fe substituted for Ni in the $Mg_2Ni$ phase. The values of isomer shift 0.24 ~ 0.28 mm/s suggest that the iron exist in the state $Fe^{+3}$. The result that the quadrapole splitting of the doublet 2 is not zero shows that the distribution of electrons around the iron is asymmetric. Their values for the doublet 2, 1.20 ~ 1.38 mm/s, approach the value of quadrapole for the oxidation number +3. The six-line showing the magnetic hyperfine interactions results from the iron which has not substituted the nickel in the $Mg_2Ni$ phase. The $M{\ddot{o}}ssbauer$ spectra of the hydrided alloys with x=0.015 and 0.03 show six-line. This suggests that the iron segregates with the hydriding reaction. The analysis results of the $M{\ddot{o}}ssbauer$ spectrum, the variation of magnetization with magnetic field, Auger electron spectroscopy and electron diffraction show the segregation of Ni and the formation of MgO. This is considered to result from the reaction of the $Mg_2Ni$ phase with the oxygen contained in the hydrogen as impurity.

  • PDF

A Study on the Heavy Metals Concentrations in the Air of the Dental Laboratories, in the Blood and Urine of Dental Laboratory Technicians (치과기공실 공기중 및 치과기공사의 혈액, 요중 중금속 함량에 관한 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.10 no.1
    • /
    • pp.11-24
    • /
    • 1988
  • The purpose of this study was to determine the concentration of cadmium, nickel and chromium in the air of the work-place, blood of and urine of workers and compare the level of those heavy metals by the duration of work, work-place, process of work, smoking and other factors. In this study, 48 male dental laboratory technicans and 72 office workers as the control group were subjected. The concentration of cadmium, nickel and chromium in their blood sand urine, and that of heavy metals in the air of their work-rooms were examined and analyzed from June I 1987 to September 30, 1987. The results were as follows : 1. The concentration of cadmium in the air was the highest in the porcelain part, $0.0087{\pm}0.0016mg/m^3$, that of nickel was the highest in the crown bridge part, $0.4253{\pm}0.0052mg/m^3$, and that of chrnmium was highest in the partial denture part, $0.1063{\pm}0.0024mg/m^3$. 2. cadmium, nickel and chromium concentrations in the blood and urine of dental laboratory techincians were higher that in the office workers'. Especially the concentration of cadmium in the blood($1.92{\pm}1.23{\mu}g$/100ml) of th dental laboratory techician was about two times as high as that in the office workers'($0.90{\pm}0.73{\mu}g$/100ml), and the concentration of nickel in the urine($48.53{\pm}38.83{\mu}g$/e) of the dental laboratory thchnician was about two times as high as that in the office worker's($20.24{\pm}15.35{\mu}g$/e). 3. there was no difference in the concentration of cadmium, nickel and chromium in the blood and urine with a longer duration of work. 4. The concentration of cadmium and chromium in the blood and urine differed significantly depending upon the place of work. The concentration of cadmium was the highest in the blood of dental laboratory technicians working kin the poreclain part marking at $2.53{\pm}1.08{\mu}g$/100ml. The chromium level was the heighest in the blood of partial denture park workers with a concentration of $3.60{\pm}1.02{\mu}g$/100ml. Concerning the level of cadmium in urine, it was the highest in the porcelain part workers with a concentration of $3.41{\pm}3.15{\mu}g$/e. 5. The concentration of cadmium in the urine of metal trimming and polishing group($2.64{\pm}2.41{\mu}g$/e) was higher than that of non-metal trimming and polishing group($1.39{\pm}1.18{\mu}g$/e). 6. The concentration of chromium in the blood of smoking group($2.46{\pm}1.54{\mu}g$/100ml)was higher than that lf non-smoking group($1.54{\pm}1.25{\mu}g$/100ml). 7. The height positive correlation coefficient was shown between the concentration of nickel and chromium in the blood among the all correlations between 3metals(Cd, Ni, Cr) in the blood and those in urine. The correlation coefficient was relatively high(r=0.605,,p<0.01). In general, the higher the concentration of heavy metals in the air of work places the higher the concention lf them in the blood and urine of workers, mere attention should be paid to the working environment of dental laboratory workers, Furthermore, continuous biological monitoring and further research are required for an efficient health management for dental laboratory workers.

  • PDF

Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method

  • Noh, Kwang Mo;Lee, Young Bae;Kwon, Woo Hyun;Kang, Jeoung Yun;Choi, Won-Ok;Chae, Kwang Pyo
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.308-314
    • /
    • 2016
  • Cobalt-, zinc-, and nickel-zinc-substituted nano-size manganese ferrite powders, $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, $Mn_{0.8}Zn_{0.2}Fe_2O_4$ and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$, were fabricated using a sol-gel method, and their crystallographic and magnetic properties were subsequently studied. The $MnFe_2O_4$ ferrite powder annealed at temperatures above 523 K exhibited a spinel structure, and the particle size increased as the annealing temperature increased. All ferrites annealed at 773 K showed a single spinel structure, and the lattice constants and particle size decreased with the substitution of Co, Zn, and Ni-Zn. The $M{\ddot{o}}ssbauer$ spectrum of the $MnFe_2O_4$ ferrite powder annealed at 523 K only showed a doublet due to its superparamagnetic phase, and the $M{\ddot{o}}ssbauer$ spectra of the $MnFe_2O_4$, $Mn_{0.8}Co_{0.2}Fe_2O_4$, and $Mn_{0.8}Zn_{0.2}Fe_2O_4$ ferrite powders annealed at 773 K could be fitted as the superposition of two Zeeman sextets due to the tetrahedral and octahedral sites of the $Fe^{3+}$ ions. However, the $M{\ddot{o}}ssbauer$ spectrum of the $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$ ferrite powder annealed at 773 K consisted of two Zeeman sextets and one quadrupole doublet due to its ferrimagnetic and paramagnetic behavior. The area ratio of the $M{\ddot{o}}ssbauer$ spectra could be used to determine the cation distribution equation, and we also explained the variation in the $M{\ddot{o}}ssbauer$ parameters by using this cation distribution equation, the superexchange interaction and the particle size. Relative to pure $MnFe_2O_4$, the saturation magnetizations and coercivities were larger in $Mn_{0.8}Co_{0.2}Fe_2O_4$ and smaller in $Mn_{0.8}Zn_{0.2}Fe_2O_4$, and $Mn_{0.8}Ni_{0.1}Zn_{0.1}Fe_2O_4$. These variations could be explained using the site distribution equations, particle sizes and magnetic moments of the substituted ions.

Determination of Heavy Metals in Sanitary Products of Women (여성용 위생용품의 유해중금속 분석)

  • Shin, Jeoung-Hwa;Lee, Kyu-Keon;Chung, Myung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.6
    • /
    • pp.853-859
    • /
    • 2009
  • Endometriosis becomes the most common cause of pelvic pain and infertility women. The cause of endometriosis has ever been entirely proven. However, an increased use of commercial feminine hygiene products such as tampons and sanitary napkins was considered one of the major affect. Harmful substances in feminine hygiene products was analyzed and evaluated. Samples of commercial products obtained from Korea, Japan, America, Germany, and China were analyzed for six hazardous inorganic elements (chromium, cobalt, nickel, copper, cadmium and lead). In the extractable heavy metals of napkins, Cr, Ni and Cu were found in all of the samples, while Cd was detected only in two samples. In the tampons, Cr, Ni and Cu were found in all of the samples. The presence of Co and Cd was not detected in all samples The concentrations of extractable heavy metals in the tampons were lower than those in the sanitary napkins. The content of extractable heavy metals in the sanitary products was compared with the criteria of the 100 $\ddot{O}KO$ TEX Standard. It was confirmed that the level of heavy metals in the sanitary products posed no serious risk to health, based on the human-ecological criteria defined by the 100 $\ddot{O}KO$ TEX Standard.

Recycling of end-of-life LiNixCoyMnzO2 batteries for rare metals recovery

  • Sattar, Rabia;Ilyas, Sadia;Kousar, Sidra;Khalid, Amaila;Sajid, Munazzah;Bukhari, Sania Iqbal
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.88-95
    • /
    • 2020
  • An investigation of rare metals recovery from LiNixCoyMnzO2 cathode material of the end-of-life lithium-ion batteries is presented. To determine the influence of reductant on the leach process, the cathode material (containing Li 7.6%, Co 20.4%, Mn 19.4%, and Ni 19.3%) was leached in H2SO4 solutions either with or without H2O2. The optimal process parameters with respect to acid concentration, addition dosage of H2O2, temperature, and the leaching time were found to be 2.0 M H2SO4, 4 vol.% H2O2, 70℃, and 150 min, respectively. The yield of metal values in the leach liquor was > 99%. The leach liquor was subsequently treated by precipitation techniques to recover nickel as Ni(C4H7N2O2)2 and lithium as Li2CO3 with stoichiometric ratios of 2:1 and 1.2:1 of dimethylglyoxime:Ni and Na2CO3:Li, respectively. Cobalt was recovered by solvent extraction following a 3-stage process using Na-Cyanex 272 at pHeq ~5.0 with an organic-to-aqueous phase ratio (O/A) of 2/3. The loaded organic phase was stripped with 2.0 M H2SO4 at an O/A ratio of 8/1 to yield a solution of 114 g/L CoSO4; finally recovered CoSO4.xH2O by crystallization. The process economics were analyzed and found to be viable with a margin of $476 per ton of the cathode material.

Role of Sulfone Additive in Improving 4.6V High-Voltage Cycling Performance of Layered Oxide Battery Cathode (층상계 산화물 양극의 4.6V 고전압 특성 향상에서의 Sulfone 첨가제의 역할)

  • Kang, Joonsup;Nam, Kyung-Mo;Hwang, Eui-Hyeong;Kwon, Young-Gil;Song, Seung-Wan
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Capacity of layered lithium nickel-cobalt-manganese oxide ($LiNi_{1-x-y}Co_xMn_yO_2$) cathode material can increase by raising the charge cut-off voltage above 4.3 V vs. $Li/Li^+$, but it is limited due to anodic instability of conventional electrolyte. We have been screening and evaluating various sulfone-based compounds of dimethyl sulfone (DMS), diethyl sulfone (DES), ethyl methyl sulfone (EMS) as electrolyte additives for high-voltage applications. Here we report improved cycling performance of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ cathode by the use of dimethyl sulfone (DMS) additive under an aggressive charge condition of 4.6 V, compared to that in conventional electrolyte, and cathode-electrolyte interfacial reaction behavior. The cathode with DMS delivered discharge capacities of $198-173mAhg^{-1}$ over 50 cycles and capacity retention of 84%. Surface analysis results indicate that DMS induces to form a surface protective film at the cathode and inhibit metal-dissolution, which is correlated to improved high-voltage cycling performance.