• Title/Summary/Keyword: NiO thin film

Search Result 200, Processing Time 0.034 seconds

Property of Nickel Silicides with Hydrogenated Amorphous Silicon Thickness Prepared by Low Temperature Process (나노급 수소화된 비정질 실리콘층 두께에 따른 저온형성 니켈실리사이드의 물성 연구)

  • Kim, Jongryul;Choi, Youngyoun;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.11
    • /
    • pp.762-769
    • /
    • 2008
  • Hydrogenated amorphous silicon(a-Si : H) layers, 120 nm and 50 nm in thickness, were deposited on 200 $nm-SiO_2$/single-Si substrates by inductively coupled plasma chemical vapor deposition(ICP-CVD). Subsequently, 30 nm-Ni layers were deposited by E-beam evaporation. Finally, 30 nm-Ni/120 nm a-Si : H/200 $nm-SiO_2$/single-Si and 30 nm-Ni/50 nm a-Si:H/200 $nm-SiO_2$/single-Si were prepared. The prepared samples were annealed by rapid thermal annealing(RTA) from $200^{\circ}C$ to $500^{\circ}C$ in $50^{\circ}C$ increments for 30 minute. A four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and scanning probe microscopy(SPM) were used to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure, and surface roughness, respectively. The nickel silicide on the 120 nm a-Si:H substrate showed high sheet resistance($470{\Omega}/{\Box}$) at T(temperature) < $450^{\circ}C$ and low sheet resistance ($70{\Omega}/{\Box}$) at T > $450^{\circ}C$. The high and low resistive regions contained ${\zeta}-Ni_2Si$ and NiSi, respectively. In case of microstructure showed mixed phase of nickel silicide and a-Si:H on the residual a-Si:H layer at T < $450^{\circ}C$ but no mixed phase and a residual a-Si:H layer at T > $450^{\circ}C$. The surface roughness matched the phase transformation according to the silicidation temperature. The nickel silicide on the 50 nm a-Si:H substrate had high sheet resistance(${\sim}1k{\Omega}/{\Box}$) at T < $400^{\circ}C$ and low sheet resistance ($100{\Omega}/{\Box}$) at T > $400^{\circ}C$. This was attributed to the formation of ${\delta}-Ni_2Si$ at T > $400^{\circ}C$ regardless of the siliciation temperature. An examination of the microstructure showed a region of nickel silicide at T < $400^{\circ}C$ that consisted of a mixed phase of nickel silicide and a-Si:H without a residual a-Si:H layer. The region at T > $400^{\circ}C$ showed crystalline nickel silicide without a mixed phase. The surface roughness remained constant regardless of the silicidation temperature. Our results suggest that a 50 nm a-Si:H nickel silicide layer is advantageous of the active layer of a thin film transistor(TFT) when applying a nano-thick layer with a constant sheet resistance, surface roughness, and ${\delta}-Ni_2Si$ temperatures > $400^{\circ}C$.

Property of Nano-thickness Nickel Silicides with Low Temperature Catalytic CVD (Catalytic CVD 저온공정으로 제조된 나노급 니켈실리사이드의 물성)

  • Choi, Yongyoon;Kim, Kunil;Park, Jongsung;Song, Ohsung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.2
    • /
    • pp.133-140
    • /
    • 2010
  • 10 nm thick Ni layers were deposited on 200 nm $SiO_2/Si$ substrates using an e-beam evaporator. Then, 60 nm or 20 nm thick ${\alpha}$-Si:H layers were grown at low temperature (<$200^{\circ}C$) by a Catalytic-CVD. NiSi layers were already formed instantaneously during Cat-CVD process regardless of the thickness of the $\alpha$-Si. The resulting changes in sheet resistance, microstructure, phase, chemical composition, and surface roughness with the additional rapid thermal annealing up to $500^{\circ}C$ were examined using a four point probe, HRXRD, FE-SEM, TEM, AES, and SPM, respectively. The sheet resistance of the NiSi layer was 12${\Omega}$/□ regardless of the thickness of the ${\alpha}$-Si and kept stable even after the additional annealing process. The thickness of the NiSi layer was 30 nm with excellent uniformity and the surface roughness was maintained under 2 nm after the annealing. Accordingly, our result implies that the low temperature Cat-CVD process with proposed films stack sequence may have more advantages than the conventional CVD process for nano scale NiSi applications.

Coadsorptions of Carbon Monoxide and Oxygen on Polycrystalline Nickel Surface (다결정 니켈 표면에서의 CO 와 $O_2$의 공동흡착)

  • Soon Bo Lee;Jin Hyo Boo;Woo Sub Kim;Woon Sun Ahn
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.12
    • /
    • pp.1019-1024
    • /
    • 1993
  • The coadsorption of carbon monoxide and oxygen on polycrystalline nickel surface has been studied using XPS at the room temperaure. The adsorption of CO on the nickel surface precovered partially with oxygen is found to take place by the following steps: The CO molecules react with the preadsorbed oxygen atoms to liberate $CO_2$ gas at the initial stage of low CO exposures, and they are coadsorbed gradually with the increasing CO exposures. The extent of coadsorption at the higher CO exposures is found to decrease with the increasing degree of oxygen preadsorption. This finding is explained in terms of the reduced adsorption site for CO as a consequence of oxygen preadsorption. The CO molecules preadsorbed on the nickel surface inhibited the adsorption of $O_2$ molecules. The increase of oxygen exposure led to the dissociation of preadsorbed CO, and the NiO layers were formed concurrently. The dissociation was rendered to arise from an oxygen-to-CO energy transfer.

  • PDF

Preparation of $Ce_{0.8}Sm_{0.2}O_{x}$ Electrolyte Thin Film for Solid Oxide Fuel Cells by Electrophoretic Deposition (전기영동법을 이용한 고체산화물 연료전지용 $Ce_{0.8}Sm_{0.2}O_{x}$ 전해질 박막 제조)

  • Kim, Dong-Gyu;Song, Min-Wu;Lee, Kyeong-Seop;Kim, Yoen-Su;Kim, Young-Soon;Shin, Hyung-Shik
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.781-785
    • /
    • 2011
  • In this work, a nano-sized samaria-doped ceria(SDC) was prepared by a urea-based hydrothermal method and characterized by XRD, FESEM and TEM. It was observed that the increase in synthesis time and temperature gave rise to crystallity and particles size. Moreover, the synthesised powders had a excellent ion-conductivity(0.1 S/cm at 600~$800^{\circ}C$) which is suitable for electrolyte of intermediate temperature-solid oxide fuel cell(IT-SOFC). Subsequently for use as electrolyte for anode-supported IT-SOFC, we tried to deposit the SDC powder on a porous NiO-SDC substrate by electrophoretic deposition(EPD) method. From the FESEM observation, a compact

Design and deposition of two-layer antireflection and antistatic coatings using a TiN thin film (TiN 박막을 이용한 2층 무반사 코팅의 설계 및 층착)

  • 황보창권
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.5
    • /
    • pp.323-329
    • /
    • 2000
  • In this study we have calculated an ideal complex refractive index of a TiN trim used in a layer of anl1reilecnon (I\R) coatmg, [air$ISiO_2ITiNIglass$] in the visible. Also we simulated the rellectance of lwo-layer AR coating by varying the thicknesses of TiN and $SiO_2$ layers, respecl1vely. The simolation results show that we can controllhe lowest reflectance and AR band of tile AR coating. The TIN fihns were fabricated by a RF magnetron sputtering apparalus. The chemical, structural and electrical properties of TiN fih11S were inveshgated by the Rutherford backscattering spech'oscopy (RBS), atomic force microscope (AFM) and 4-point probe. The optical properlies were inve,tigated by the spectrophotometer and vanable angle spectroscopic ellipsometer (VASE). The smface roughness of TiN flhns \vas $9~10\AA$. TIle resistivity of TiN films was TEX>$360~730\mu$\Omega $ cm. The ,toichlOllletry of TiN film was 1'1: O:N = I: 0.65 :0.95 and ilic oxygen wa~ found on ilie smface. With these experimental and simu]al1on resulLs, we deposited duo: two-layer AR coating, [air$ISiO_2ITiNIglass$] and the refleClance was under 0.5% ill the regIOn of 440-650 run. 0 run.

  • PDF

펜타센의 박막두께 변화와 전극의 종류에 따른 펜타센 유기박막 트랜지스터의 특성 변화

  • Kim, Tae-Uk;Min, Seon-Min;No, Yong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.112-112
    • /
    • 2011
  • 유기박막 트랜지스터(Organic Thin Film Transistor: OTFT)는 낮은 공정비용과 기존의 고체 실리콘 트랜지스터로서 실혐 할 수 없는 플렉시블 디스플레이, 스마트카드, 태양전지 등의 매우 넓은 활용범위로 각광받고 있는 연구 분야 중 하나이다. 본 연구에서는 열 증발 증착장비(Thermal Evaporator)를 이용하여 펜타센을 활성층으로 사용한 유기박막 트랜지스터를 제작하였다. Heavily doped된 N형 실리콘 기판을 메탄올, 에탄올, 불산 처리를 하여 세척을 한 후 PECVD를 이용하여 SiO2를 200 nm 증착하였다. 그 후 열 증발 증착 장비를 사용하여 펜타센을 활성층으로 사용하였고, 분말 형태의 펜타센의 질량을 15~60 mg으로 조절하여 활성층의 두께를 조절하였다. 펜타센 증착 후 100도에서 열처리를 하고, 그 후 Shadow Mask를 이용하여 전극을 150nm 증착하였다. 이때 전극은 Au, Al, Ni 세가지 종류를 사용하였다. 펜타센의 질량을 조절하여 증착한 활성층의 두께는 60 mg일 때 약 60 nm, 45 mg일 때 약 45 nm로 1:1의 비율로 올라가는 것을 확인 할 수 있었고, 펜타센의 두께가 30 nm일 때 특성이 가장 잘 나오는 것을 볼 수 있었다. 펜타센의 두께가 두꺼울수록 게이트에서 인가되는 전압의 필드가 제대로 걸리지 않아 특성이 나쁘게 나온 것으로 보인다. 또한 활성층을 30 nm로 고정하고 전극의 종류를 바꿔가며 전기적 특성(캐리어 이동도, 문턱전압, 전달특성 등)을 측정 했을 때 전극으로 Al보다는 Au와 Ni를 사용했을 때 전기적 특성이 더 우수하게 나오는 것을 볼 수 있었다. 메탈과 펜타센과의 일함수 차이에 따른 결과로 보여진다.

  • PDF

Unusual ALD Behaviors in Functional Oxide Films for Semiconductor Memories

  • Hwang, Cheol Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.1-77.1
    • /
    • 2013
  • Atomic layer deposition (ALD) is known for its self-limiting reaction, which offers atomic-level controllability of the growth of thin films for a wide range of applications. The self-limiting mechanism leads to very useful properties, such as excellent uniformity over a large area and superior conformality on complex structures. These unique features of ALD provide promising opportunities for future electronics. Although the ALD of Al2O3 film (using trimethyl-aluminum and water as a metal precursor and oxygen source, respectively) can be regarded as a representative example of an ideal ALD based on the completely self-limiting reaction, there are many cases deviating from the ideal ALD reaction in recently developed ALD processes. The nonconventional aspects of the ALD reactions may strongly influence the various properties of the functional materials grown by ALD, and the lack of comprehension of these aspects has made ALD difficult to control. In this respect, several dominant factors that complicate ALD reactions, including the types of metal precursors, non-metal precursors (oxygen sources or reducing agents), and substrates, will be discussed in this presentation. Several functional materials for future electronics, such as higher-k dielectrics (TiO2, SrTiO3) for DRAM application, and resistive switching materials (NiO) for RRAM application, will be addressed in this talk. Unwanted supply of oxygen atoms from the substrate or other component oxide to the incoming precursors during the precursor pulse step, and outward diffusion of substrate atoms to the growing film surface even during the steady-state growth influenced the growth, crystal structure, and properties of the various films.

  • PDF

CVD Growth of Grapbene on a Thin Ni Film (Ni 금속 박막위 그라핀 CVD 성장 연구)

  • Choi, In-Sung;Kim, Eun-Ho;Park, Jae-Min;Lee, Han-Sung;Lee, Wan-Kyu;Oh, Se-Man;Cho, Won-Ju;Jung, Jong-Wan;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.425-425
    • /
    • 2009
  • 그라핀을 금속 촉매를 이용하여 상압 혹은 저진공 CVD로 성장할 경우 대형 기판을 쉽게 얻을 수 있으므로 최근 들어 금속 촉매를 이용한 CVD 기술이 재 각광받고 있다. 최근 MIT의 Jing Kong 그룹, Purdue 대학의 Yong P. Chen 그룹, 국내에서는 성균관대학에서 이에 대한 논문을 발표한 바 있다. CVD 방법의 가장 큰 장점은 그라핀 박막의 가장 큰 문제점 중 하나인 대형 기판에 매우 유리하다는 점이다. 본 연구에서는 결함 없는 대형 그라핀기판을 얻기위해 Si/$SiO_2$/Ni 박막위에 그라핀을 LPCVD로 성장하는 실험을 진행하였다. 우선 시료는 Si위에 $SiO_2$를 Sputtering으로 증착하였고, 그 위에 250nm, 300nm두께의 Ni 박막을 e-beam evaporator로 증착하였다. $0.5-1cm^2$ 크기의 샘플을 Thermal CVD 장비를 이용하여 그라핀을 성장하는 실험을 진행하였다. 성장 압력은 95 torr, 성장온도는 $800^{\circ}C$, $850^{\circ}C$, $900^{\circ}C$에서 Hydrocarbon ($C_2H_2$)을 5min, 10min으로 성장시간을 split하였다. Hydrocarbon을 흘리기 전에 Ni grain을 성장하기 위해 성장온도에서 30~60min정도 $H_2$분위기에서 Ni 산화막의 환원 및 어닐링을 진행하였다. 그림.1은 $850^{\circ}C$, 5분간 성장한 그라핀/Ni 샘플의 광학사진이다. 그림.2는 $850^{\circ}C$에서 5min, 10min 성장한 샘플의 Raman spectrum이다. (파장은 514.532nm). 850C 10min 샘플은 G>G' peak 이지만, 5min으로 성장한 샘플의 경우 G'>G peak 임을 알 수 있고, 따라서 5min의 조건에서는 층 두께가 4층 미만의 그라핀 박막을 얻을 수 있음을 보여준다. 또한 G' peak의 위치가 두께가 감소할수록 내려감을 확인할 수 있다. 다만 D peak가 실험한 대부분의 샘플에서 보여서 아직 성장한 그라핀의 결합이 많은 것으로 보인다. 이러한 이유는 성장온도가 낮은 것이 일차 원인으로 생각되며 박막의 균일도 향상과 결함을 줄이기 위한 추가적인 개선 실험을 진행 중이다.

  • PDF

The electrochromic properties of tungsten oxide thin films coated by a sol-gel spin coating under different reactive temperature (솔-젤 스핀 코팅에 의해 증착된 텅스텐 산화물 박막의 반응 온도에 따른 전기변색특성 연구)

  • 심희상;나윤채;조인화;성영은
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.128-128
    • /
    • 2003
  • Electrochromism (EC) is defined as a phenomenon in which a change in color takes place in the presence of an applied voltage. Because of their low power consumption, high coloration efficiency, EC devices have a variety of potential applications in smart windows, mirror, and optical switching devices. An EC devices generally consist of a transparent conducting layer, electrochromic cathodic and anodic coloring materials and an ion conducting electrolyte. EC has been widely studied in transition metal oxides(e.g., WO$_3$, NiO, V$_2$O$\sub$5/) Among these materials, WO$_3$ is a most interesting material for cathodic coloration materials due to its lush coloration efficiency (CE), large dynamic range, cyclic reversibility, and low cost material. WO$_3$ films have been prepared by a variety of methods including vacuum evaporation, chemical vapor deposition, electrodeposition process, sol-gel synthesis, sputtering, and laser ablation. Sol-gel process is widely used for oxide film at low temperature in atmosphere and requires lower capital investment to deposit large area coating compared to vacuum deposition process.

  • PDF

Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells (고체산화물 연료전지 연료극 및 전해질 미세구조 최적화)

  • Noh, Jong Hyeok;Myung, Jae-ha
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.525-530
    • /
    • 2019
  • The performance and stability of solid oxide fuel cells (SOFCs) depend on the microstructure of the electrode and electrolyte. In anode, porosity and pore distribution affect the active site and fuel gas transfer. In an electrolyte, density and thickness determine the ohmic resistance. To optimizing these conditions, using costly method cannot be a suitable research plan for aiming at commercialization. To solve these drawbacks, we made high performance unit cells with low cost and highly efficient ceramic processes. We selected the NiO-YSZ cermet that is a commercial anode material and used facile methods like die pressing and dip coating process. The porosity of anode was controlled by the amount of carbon black (CB) pore former from 10 wt% to 20 wt% and final sintering temperature from $1350^{\circ}C$ to $1450^{\circ}C$. To achieve a dense thin film electrolyte, the thickness and microstructure of electrolyte were controlled by changing the YSZ loading (vol%) of the slurry from 1 vol% to 5 vol. From results, we achieved the 40% porosity that is well known as an optimum value in Ni-YSZ anode, by adding 15wt% of CB and sintering at $1350^{\circ}C$. YSZ electrolyte thickness was controllable from $2{\mu}m$ to $28{\mu}m$ and dense microstructure is formed at 3vol% of YSZ loading via dip coating process. Finally, a unit cell composed of Ni-YSZ anode with 40% porosity, YSZ electrolyte with a $22{\mu}m$ thickness and LSM-YSZ cathode had a maximum power density of $1.426Wcm^{-2}$ at $800^{\circ}C$.