• Title/Summary/Keyword: NiO powder

Search Result 313, Processing Time 0.034 seconds

Properties of Synthesized Al2O3-CuO-ZnO/Ni Composite for Hydrogen Membranes

  • Rim, Saetbyol;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.477-480
    • /
    • 2014
  • An $Al_2O_3$-CuO-ZnO (ACZ) precursor powder was synthesized by a facial sol-gel process using a nonionic surfactant span 80 as the chelating agent to improve the surface area and morphology. When creating a hydrogen membrane, several kinds of properties are required, such as easy dissociation of hydrogen molecules, fast hydrogen diffusion, high hydrogen solubility, and resistance to hydrogen embrittlement. ACZ-Ni composite membranes (cermet) were prepared with this precursor and pure Ni powder via the hot press sintering (HPS) method. The ACZ powder was characterized by XRD, BET, and FE-SEM. Hydrogen permeation experiments were performed by Sievert's type of hydrogen permeation membrane equipment. The hydrogen permeability of ACZ/Ni 10 wt% and ACZ/Ni 20 wt% was obtained as 7.2 and $10molm^{-2}s^{-1}$ at RT, respectively. These values of the corresponding membranes were slightly increased with increasing pressures.

Synthesis and Magnetic Properties of Nanocrystalline Fe-Ni Alloys During Hydrogen Reduction of NiFe2O4 (NiFe2O4의 수소환원에 의한 나노구조 Fe-Ni 합금의 제조 및 자성특성)

  • Paek, Min Kyu;Do, Kyung Hyo;Bahgat, Mohamed;Pak, Jong Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • Nickel ferrite ($NiFe_2O_4$) powder was prepared through the ceramic route by calcination of a stoichiometric mixture of nickel oxide (NiO) and iron oxide ($Fe_2O_3$). The pressed pellets of $NiFe_2O_4$ were isothermally reduced in pure hydrogen at 800, 900, 1000 and $1100^{\circ}C$. Based on thermogravimetric analysis, the reduction behavior and the kinetic reaction mechanisms of the synthesized ferrite were studied. The initial ferrite powder and various reduction products were characterized by XRD, SEM, reflected light microscope and VSM to reveal the effect of hydrogen reduction on the composition, microstructure, magnetic properties and reaction kinetics of the produced Fe-Ni alloy. Complete reduction of the $NiFe_2O_4$ was achieved with synthesis of homogeneous nanocrystalline Fe-Ni alloys. Arrhenius equation with the approved mathematical formulations for a gas-solid reaction was applied for calculating the activation energy ($E_a$) values and detecting the controlling reaction mechanism.

The Optimization of Hydrogen Reduction Process for Mass Production of Fe-8wt%Ni Nanoalloy Powder

  • Jung, Sung-Soo;Kang, Yun-Sung;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1331-1332
    • /
    • 2006
  • The present investigation has attemped to optimize hydrogen reduction process for the mass production of Fe-8wt%Ni nanoalloy powder from ball milled $Fe_2O_3-NiO$ powder. In-situ hygrometry study was performed to monitor the reduction behavior in real time through measurement of water vapor outflowing rate. It was found that the reduction process can be optimized by taking into account the apparent influence of water vapor trap in the reactor on reduction kinetics which strongly depends on gas flow rate, reactor volume and reduction.

  • PDF

Addition effects of nanoscale NiO on microstructure and superconducting properties of MgB2

  • Ranot, Mahipal;Jang, S.H.;Oh, Y.S.;Shinde, K.P.;Kang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We have investigated the addition effect of NiO magnetic nanoparticles on crystal structure, microstructure as well as superconducting properties of $MgB_2$. NiO-added $MgB_2$ samples were prepared by the solid-state reaction method. The superconducting transition temperature ($T_c$) of 37.91 K was obtained for pure $MgB_2$, and $T_c$ was found to decrease systematically on increasing the addition level of NiO. X-ray diffraction (XRD) analysis revealed that no substitution of Ni for Mg in the lattice of $MgB_2$ was occurred. The microstructural analysis shows that the pure $MgB_2$ sample consists of plate shape $MgB_2$ grains, and the grains get refined to smaller size with the addition of NiO nanoparticles. At 5 K, high values of critical current density ($J_c$) were obtained for small amount NiO-added $MgB_2$ samples as compared to pure sample. The enhancement in $J_c$ could be attributed to the refinement of $MgB_2$ grains which leads to high density of grain boundaries in NiO-added $MgB_2$ samples.

Effect of Alloying on the Microstructure and Fatigue Behavior of Fe-Ni-Cu-Mo P/M Steels

  • Bohn, Dmitri A.;Lawley, Alan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.34-34
    • /
    • 1997
  • The effect of alloying mode and porosity on the axial tension-tension fatigue behavior of a P/M steel of nominal composition Fe-4w/o Ni-1.5w/o Cu-O.5w/o Mo-O.5w/o C has been evaluated. Alloying modes utilized were elemental powder mixing, partial alloying(distaloy) and prealloying by water atomization; in each case the carbon was introduced as graphite prior to sintering. Powder compacts were sintered($1120{\circ}C$/30 min.) in 7Sv/o $H_2$/25v/o $N_2$ to densities in the range 6.77-7.2 g/$cm^3$. The dependence of fatigue limit response on alloying mode and porosity was interpreted in terms of the constituent phases and the pore and fracture morphologies associated with the three alloying modes. For the same nominal composition, the three alloying modes resulted in different sintered microstructures. In the elemental mix alloy and the distaloy, the major constituent was coarse and fine pearlite, with regions of Ni-rich ferrite, Ni-rich martensite and Ni-rich areas. In contrast, the prealloy consisted primarily of martensite by with some Ni-rich areas. From an examination of the fracture surfaces following fatigue testing it was concluded that essentially all of the fracture surfaces exhibited dimpled rupture, characteristic of tensile overload. Thus, the extent of growth of any fatigue cracks prior to overload was small. The stress amplitude for the three alloying modes at 2x$l0^6$ was used for the comparison of fatigue strengths. For load cycles <3x$l0^5$, the prealloy exhibited optimum fatigue response followed by the distaloy and elemental mix alloy, respectively. At load cycles >2x$l0^6$, similar fatigue limits were exhibited by the three alloys. It was concluded that fatigue cracks propagate primarily through pores, rather than through the constituent phases of the microstructure. A decrease in pore SIze improved the S-N behavior of the sintered steel.

  • PDF

Preparation and Electromagnetic Properties of Ni-Zn Ferrite by Wet Method (습식합성법을 이용한 Ni-Zn Ferrite의 제조 및 전자기적 특성연구)

  • Jung, Goo-Eun;Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2004
  • Ni-Zn ferrite powder was synthesized from metal nitrates, Fe(N $O_3$)$_3$$.$9 $H_2$O, Ni(N $O_3$)$_2$$.$6 $H_2$O, Zn(N $O_3$)$_2$$.$6 $H_2$O by wet direct process to make high permeability material. The composition of the ferrite powder is (N $i_{0.284}$F $e_{0.053}$Z $n_{0.663}$)F $e_2$ $O_4$. Ni-Zn ferrite powder is compounded by precipitating metal nitrates with NaOH in vessel at 90$^{\circ}C$ synthetic temperature for 8 hours. Calcination temperature and sintering temperature were 700$^{\circ}C$ and 1150$^{\circ}C$-1250$^{\circ}C$ respectively for 2 hours. The same compound powder was extracted from metal oxide by wet ballmilling. We compared the properties of powder and the electromagnetic characteristics of the sintered cores obtained from the two different processes. Wet direct process produces smaller particle size with narrower distribution and higher purified ferrite which cores has high permeability and high magnetization.

Epoxidation of Styrene using Nanosized γ-Al2O3/NiO Heterogeneous Catalyst Derived from the P123 Surfactant

  • Son, Boyoung;Jung, Miewon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.423-426
    • /
    • 2012
  • $Al_2O_3$/NiO powder was obtained through hydrolysis-condensation reactions and thermal treatments. An organic additive, triblock copolymer surfactant P123, was added to the starting materials to control the surface area and morphology. The synthesized powder was characterized by X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM) and a Brunner-Emmett-Teller surface analysis (BET). The heterogeneous catalytic activity of this powder was applied to an epoxidation reaction of styrene and was monitored using a gas chromatograph with mass spectrophotometry (GC/MS).

Synthesis of Ni-YSZ cermets for SOFC by glycine nitrate process (Glycine nitrate process에 의한 SOFC용 Ni-YSZ cermets 제조)

  • Lee, Tae-Suk;Ko, Jung-Hoon;Kim, Bok-Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.6
    • /
    • pp.289-294
    • /
    • 2010
  • Ni-YSZ (Yttria Stabilized Zirconia) composite powders for SOFC were fabricated by glycine nitrate process. $ZrO(NO_3)_2{\cdot}2H_2O$, $Y(NO_3)_3{\cdot}6H_2O$, $Ni(NO_3)_2{\cdot}6H_2O$ and glycine were chosen as the starting materials. The structural properties of the sintered Ni-YSZ cermets have been investigated with respect to the volume contents of Ni. A porous microstructure consisting of homogeneously distributed Ni and YSZ phases together with well-connected grains was observed. The sintered Ni-YSZ cermets showed a porous microstructure consists of homogeneously distributed Ni and YSZ phases and the grains were well-connected. It was found that the open porosity is sensitive to the volume content of Ni. The Ni-YSZ cermet containing 35 vol% Ni seems to be suitable for the electrode material of SOFC since it provides sufficient open porosity higher than 30%.

Morphologies of Brazed NiO-YSZ/316 Stainless Steel Using B-Ni2 Brazing Filler Alloy in a Solid Oxide Fuel Cell System

  • Lee, Sung-Kyu;Kang, Kyoung-Hoon;Hong, Hyun-Seon;Woo, Sang-Kook
    • Journal of Powder Materials
    • /
    • v.18 no.5
    • /
    • pp.430-436
    • /
    • 2011
  • Joining of NiO-YSZ to 316 stainless steel was carried out with B-Ni2 brazing alloy (3 wt% Fe, 4.5 wt% Si, 3.2 wt% B, 7 wt% Cr, Ni-balance, m.p. 971-$999^{\circ}C$) to seal the NiO-YSZ anode/316 stainless steel interconnect structure in a SOFC. In the present research, interfacial (chemical) reactions during brazing at the NiO-YSZ/316 stainless steel interconnect were enhanced by the two processing methods, a) addition of an electroless nickel plate to NiO-YSZ as a coating or b) deposition of titanium layer onto NiO-YSZ by magnetron plasma sputtering method, with process variables and procedures optimized during the pre-processing. Brazing was performed in a cold-wall vacuum furnace at $1080^{\circ}C$. Post-brazing interfacial morphologies between NiO-YSZ and 316 stainless steel were examined by SEM and EDS methods. The results indicate that B-Ni2 brazing filler alloy was fused fully during brazing and continuous interfacial layer formation depended on the method of pre-coating NiO-YSZ. The inter-diffusion of elements was promoted by titanium-deposition: the diffusion reaction thickness of the interfacial area was reduced to less than 5 ${\mu}m$ compared to 100 ${\mu}m$ for electroless nickel-deposited NiO-YSZ cermet.

Fabrication of Biaxially Textured Ni Tapes from Ni Powder Compact Rods (분말 성형체로부터 양축정렬 집합조직을 갖는 니켈 테이프의 제조)

  • 이동욱;지봉기;주진호;김찬중
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 $\mu$m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100$0^{\circ}C$ showed poor elongation and low fracture strength, while the Wi rods sintered above 100$0^{\circ}C$ revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100$0^{\circ}C$ are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 $\mu$m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8$^{\circ}$ to 10$^{\circ}$. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10$^{\circ}$, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.