• Title/Summary/Keyword: NiMH

Search Result 121, Processing Time 0.022 seconds

The effect of Ni content on the discharge characteristics of Zr-V-Mn-Ni hydrogen storage alloy electrode (Zr-V-Mn-Ni 수소저장합금전극의 방전특성에 미치는 Ni 양의 효과에 관한 연구)

  • Lee, Sang-Min;Kim, Dong-Myung;Jung, Jae-Han;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.1
    • /
    • pp.11-21
    • /
    • 1997
  • $ZrV_{0.7}Mn_{0.5}Ni_{1.2}$ alloy is attractive for anode material in Ni/MH secondary battery because of its large hydrogen storage capacity in gas-solid reaction and long cycling durability in KOH electrolyte. In this work, in order to further improve the discharge performance of this alloy electrode, the alloy was annealed by optimal condition which is for 12 hours at $1000^{\circ}C$. The alloy annealed under optimal condition had higher rate capability and discharge capacity than as-cast one. The microstructure of the as-cast and annealed alloy was investigated by scanning electron microscopy and energy dispersive spectroscopy. Ni content in the matrix was increased, being this homogenized after annealing. Additionally, The measurement of the surface area by B.E.T. analysis showed that there was little difference as-cast and annealed alloy. Therefore, improvement in the rate capability of the annealed alloy is due to increase of Ni content in the matrix.

  • PDF

Electrode Characteristics of the (Mm)Ni5-Based Hydrogen Storage Alloys ((Mm)Ni5계 수소저장합금의 전극 특성)

  • Han, D.S.;Choi, S.J.;Chang, M.H.;Choi, J.;Park, C.N.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.6 no.1
    • /
    • pp.35-41
    • /
    • 1995
  • The MmNi-based alloy electrode was studied for use as a negative electrode in Ni-MH battery. Alloys with $MmNi_5-_xM_x$(M=Co,Al,Mn) composition were synthesized, and their electrode charateristics of activation rate, temperature dependence, electrode capacity and cycle life were investigated. With increasing Al content and decreasing Mn content in the alloys, the discharge capacity increased while the cycle life decreased. As x in $MmNi_5-_xM_x$ increased from 1.5 to 2.0, decreasing the Ni content, the discharge capacity, the low temperature property and the rate capability decreased. However its cycle life was improved. Increasing Co content resulted in a prolonged cycle life and decrease of high rate discharge capacity. It can be concluded that the most promising alloy in view of discharge capacity and cycle life is $MmNi_{3.5}Co_{0.7}Al_{0.5}Mn_{0.3}$.

  • PDF

Effect of Heat Treatment of Mg2Ni Thin Film Electrode on the Electrochemical Properties (Mg2Ni 박막 전극의 전기화학적 특성에 미치는 열처리의 효과)

  • Lim, Young-Taek;Ryu, Dong-Hyun;Kim, Ki-Won;Hur, Bo-Young;Ahn, Hyo-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • Ni/MH 박막전지의 전극으로 사용될 수 $Mg_{2}Ni$박막을 스퍼터링방법으로 제조하였다. $Mg_{2}Ni$합금박막은 Mg, Ni타?을 이용하여 동시에 스퍼터링함으로서 제조하였다. KOH 액체전해질 및 $Ni(OH)_2$전극을 이용하여 전기화학실험을 하였다. $Mg_2Ni$ 박막의 초기 싸이클 특성에 미치는 열처리 효과를 조사하기 위하여, $200-550^{\circ}C$로 변화시키면서 진공중에서 열처리를 하였다. 열처리온도가 $300^{\circ}C$ 이하에서는 초기방전용량이 증가하였으며, $400^{\circ}C$ 열처리시에는 활성화시의 방전용량이 약 160mAh/g으로 가장 크게 나타났다.

Metal Complexes of Ambidentate Ligand (VIII). Ni (II) and Pd (II) Complexes of Isonitrosomethylacetoacetate Imines (Ambidentate 리간드의 금속착물 (제 8 보). Isonitrosomethylacetoacetate Imine 리간드의 니켈(II) 및 팔라듐(II) 착물)

  • Bon-Chang Goo;Gang-Yeol Choi;Man-Ho Lee;In-Whan Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.7
    • /
    • pp.662-671
    • /
    • 1993
  • New Ni(II) and Pd(II) complexes of isonitrosomethylacetoacetate imine derivatives, Ni(IMAA-NH)(IMAA-NH'), Ni(IMAA-NH)(IMAA-NR), $Pd(IMAA-NH)_2\;and Pd(IMAA-NR)_2(R=CH_3,\;C_2H_5,\;n-C_3H_7,\;n-C_4H_9,\;or\;CH_2C_6H_5)$, where H-IMAA-NH and H-IMAA-NR represent isonitrosomethylacetoacetate imine and N-alkylisonitrosomethylacetoacetate imine derivative, respectively, have been prepared and the structures of the complexes have been studied by elemental analyses, electronic, infrared, and $^1H-\;and\;^{13}C-NMR$ spectroscopies.

  • PDF

Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V ($AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성)

  • Kim, D.H.;Cho, S.W.;Jung, S.R.;Park, C.N.;Choi, J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.

Effects of Alloying Elements and Binding Materials on the Corrosion Behavior of Metal Hydride Electrodes (금속수소화물전극의 부식특성에 미치는 합금원소와 결합제의 영향)

  • Lee, Yang-Boum;Choe, Han-Cheol;Park, Ji-Yoon;Kim, Kwan-Hyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.161-167
    • /
    • 1998
  • It has been investigated the effects of alloying elements and binders on the corrosion behavior of metal hydride electrodes for anode of Ni/MH secondary battery. The $AB_5$-type alloys, $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$ and $(LM)Ni_{3.6}Co_{0.7}Mn_{0.3}Al_{0.4}$, were used for the experiments. The electrodes were prepared by mixing and cold-pressing of alloy powders with Si sealent or PTFE powders, or cold-pressing the electroless copper coated alloy powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

A Study on the Electrochemical and Thermodynamic Properties of Hydrogen Absorbing Alloys (수소저장합금의 전기화학 및 열역학적 특성에 관한 연구)

  • Park, Chan-Kyo;Cho, Tae-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • Electrochemical and thermodynamic properties of $MmNi_5$ and the related alloys for nickel-metal hydride battery(Ni-MH) were studied in terms of the equilibrium hydrogen pressure. $MmNi_5$ alloy with high equilibrium hydrogen pressure(10~20atm at room temperature), which is usually difficult to charge, was substituted for Al in part. Partial substitution of Al made not only the equilibrium pressure to be reduced remarkably, but also the enthalpy change depending on the formation of metal hydride to be agreed to the value in gas phase reaction and electrochemical reaction. Besides the composition of Al which can be given the maximum discharge capacity was turned out to be between the 0.5~1.0 atoms of Al.

  • PDF

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

The Effect of Mechanical Grinding or Electrochemical Properties of $CaNi_5$ Hydrogen Storage Alloy ($CaNi_5$ 수소저장합금의 전기화학 특성에 미치는 MG 처리 효과)

  • Lee C. R.;Kang S. G.
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.106-111
    • /
    • 1999
  • The effect of the MG on the electrochemical charge-discharge properties of $CaNi_5$ hydrogen storage alloys was investigated under Ar and $H_2$ atmosphere. $CaNi_5$ alloy was partially decomposed to CaO and Ni phase during the MG process. The decomposition of $CaNi_5$ alloy was enhanced by the MG process which leads to crash and reformation of oxide layer on the alloy surface. As the MG process time increased, initial discharge capacity of the electrode was reduced, but the decay rate of the capacity compared to $CaNi_5$ alloys was slower. It may be described that the degradation of $MG-CaNi_5$ electrode was caused by the reduction of the reversible hydrogen reaction sites and increasing polarization resistance of hydrogen adsorption resulted from phase decomposition and disorder during the MG process, and/or by hydroxide formation during the electrochemical charge-discharge cycles.