• Title/Summary/Keyword: NiFe-Electrode

Search Result 78, Processing Time 0.019 seconds

Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성)

  • AN, DA-SOL;BAE, KI-KWANG;PARK, CHU-SIK;KIM, CHANG-HEE;KANG, KOUNG-SOO;CHO, WON-CHUL;CHO, HYUN-SEOK;KIM, YOUNG-HO;JEONG, SEONG-UK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

Study on Oxygen Evolution Reaction of Ni-Zn-Fe Electrode for Alkaline Water Electrolysis (알칼라인 수전해용 Ni-Zn-Fe 전극의 산소 발생 반응 특성)

  • LEE, TAEKYUNG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;KANG, KYOUNGSOO;KIM, YOUNGHO;JEONG, SEONGUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.549-558
    • /
    • 2018
  • The overall efficiency depend on the overpotential of the oxygen evolution reaction in alkaline water electrolysis. Therefore, it is necessary to research to reduce the oxygen evolution overpotential of electrodes. In this study, Ni-Zn-Fe electrodes were prepared by electroplating and the surface area was increased by Zn leaching process. Electroplating variables were studied to optimize the plating parameters(electroplating current density, pH value of electroplating solution, Ni/Fe content ratio). Ni-Zn-Fe electrode, which is electroplated in a modified Watts bath, showed 0.294 V of overpotential at $0.1A/cm^2$. That result is better than that of Ni and Ni-Zn plated electrodes. As the electroplating current density of the Ni-Zn-Fe electrode increased, the particle size tended to increase and the overpotential of oxygen evolution reaction decreased. As reducing pH of electroplating solution from 4 to 2, Fe content in electrode and activity of oxygen evolution reaction decreased.

Study on the Electrode Characteristics for the Alkaline Water Electrolysis (알칼리 수전해용 전극에 관한 연구)

  • Choi, Ho-Sang;Yim, Doo-Soon;Rhyu, Cheol-Hwe;Kim, Jae-Chul;Hwang, Gab-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.117-124
    • /
    • 2012
  • Alkaline electrolysis needs the electrode having a low overvoltage and good corrosion resistance in alkaline solution such as KOH and NaOH, for the oxygen and hydrogen production. The commercial materials such as SUS(stainless steel)-316, Ni and NiFe were evaluated for the electrode in alkaline electrolysis. The test solution for the alkaline electrolysis used 1~9M NaOH and 1~9M KOH. The voltage increased with an increase of current density in each solution. As for the 15wt.% (about 5M) NaOH, the voltage of the tested electrode under the current density of 1.8A/$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: Ni${\fallingdotseq}$NiFe$cm^2$ showed the almost same value. The voltage over the current density of 1.8A/$cm^2$ deceased in the order: NiFe${\fallingdotseq}$SUS-316. From the results, it was estimated that NiFe and Ni was suitable as the electrode for the alkaline water electrolysis using NaOH and KOH electrolyte.

A Study on the Manufacturing Process of Fe-Ti Type Electrode for Ni/MH Secondary Battery (Ni/MH 2차전지용 Fe-Ti계 전극 제조공정에 대한 연구)

  • Joung, Sang-sik;Kim, Ki-won;Ahn, Hyo-jun;Joung, Soon-dol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.2
    • /
    • pp.65-75
    • /
    • 1998
  • Five different processes were selected and tested to find an useful method of manufacturing Fe-Ti type electrode. Initially, FeTi alloy was prepared by melting in plasma arc furnace and then powdered for shaping. Electroless Ni plating on these powder particles before shaping improved the discharge characteristics. The effects of heat-treatments on the electrode characteristics were also investigated. The discharge capacities of electrods were increased with the increasing heat-treatment temperatures. When heat treated at $1000^{\circ}C$ after shaping, the best results were acquired in the discharge capacity and cycle life. Both electroless Ni plating and heat-treatment were appeared to be crucial for the performance improvement of FeTi type electrode. Fe-Ti -Mn electrodes were prepared according to the process suggested in this study and tested to verify the promising effects of that.

  • PDF

Effect of Electroplating Parameters on Oxygen Evolution Reaction Characteristics of Raney Ni-Zn-Fe Electrode (Raney Ni-Zn-Fe 전극의 산소발생 반응 특성에 미치는 도금변수의 영향)

  • CHAE, JAEBYEONG;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KIM, YOUNGHO;KANG, KYOUNGSOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • The intermittent characteristics of renewable energy complicates the process of balancing supply with demand. Electrolysis technology can provide flexibility to grid management by converting electricity to hydrogen. Alkaline electrolysis has been recognized as established technology and utilized in industry for over 100 years. However, high overpotential of oxygen evolution reaction in alkaline water electrolysis reduces the overall efficiency and therefore requires the development of anode catalyst. In this study, Raney Ni-Zn-Fe electrode was prepared by electroplating and the electrode characteristics was studied by varying electroplating parameters like electrodeposition time, current density and substrate. The prepared Raney Ni-Zn-Fe electrode was electrochemically evaluated using linear sweep voltammetry. Physical and chemical analysis were conducted by scanning electron microscope, energy dispersive spectrometer, and X-ray diffraction. The plating time did not changed the morphology and composition of the electrode surface and showed a little effect on overpotential reduction. As the plating current density increased, Fe content on the surface increased and cauliflower-like structure appeared on the electrode surface. In particular, the overpotential of the electrode, which was prepared at the plating current density of 320 mA/㎠, has showed the lowest value of 268 mV at 50 mA/㎠. There was no distinguishable overpotential difference between the type of substrate for the electrodes prepared at 80 mA/㎠.

Improved Performance of Lithium-Ion Batteries using a Multilayer Cathode of LiFePO4 and LiNi0.8Co0.1Mn0.1O2

  • Hyunchul Kang;Youngjin Kim;Taeho Yoon;Junyoung Mun
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.320-325
    • /
    • 2023
  • In Li-ion batteries, a thick electrode is advantageous for lowering the inactive current collector portion and obtaining a high energy density. One of the critical failure mechanisms of thick electrodes is inhomogeneous lithiation and delithiation owing to the axial location of the electrode. In this study, it was confirmed that the top layer of the composite electrode contributes more to the charging step owing to the high ionic transport from the electrolyte. A high-loading multilayered electrode containing LiFePO4 (LFP) and LiNi0.8Co0.1Mn0.1O2 (NCM811) was developed to overcome the inhomogeneous electrochemical reactions in the electrode. The electrode laminated with LFP on the top and NCM811 on the bottom showed superior cyclability compared to the electrode having the reverse stacking order or thoroughly mixed. This improvement is attributed to the structural and interfacial stability of LFP on top of the thick electrode in an electrochemically harsh environment.

Dependence of giant magnetoimpedance on aspect ratio and thickness of electrode layer for phto-lithograpically patterned $Ni_{79}Fe_{18}Mo_{5}\%/Ag/Ni_{79}Fe_{18}Mo_{5}\%$ multilayer (사진공정으로 제작된 $Ni_{79}Fe_{18}Mo_{5}\%/Ag/Ni_{79}Fe_{18}Mo_{5}\%$ 박막의 전도층 형상비 및 두께에 따른 자기 임피던스 효과)

  • 이기언;이두현;정근희;윤성용;임태완;장대영;김용성;서수정
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2004.12a
    • /
    • pp.80-80
    • /
    • 2004
  • PDF

Electrochemical Performance of M2GeO4 (M = Co, Fe and Ni) as Anode Materials with High Capacity for Lithium-Ion Batteries

  • Yuvaraj, Subramanian;Park, Myung-Soo;Kumar, Veerasubramani Ganesh;Lee, Yun Sung;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • $M_2GeO_4$ (M = Co, Fe and Ni) was synthesized as an anode material for lithium-ion batteries and its electrochemical characteristics were investigated. The $Fe_2GeO_4$ electrode exhibited an initial discharge capacity of $1127.8mAh\;g^{-1}$ and better capacity retention than $Co_2GeO_4$ and $Ni_2GeO_4$. A diffusion coefficient of lithium ion in the $Fe_2GeO_4$ electrode was measured to be $12.7{\times}10^{-8}cm^2s^{-1}$, which was higher than those of the other two electrodes. The electrochemical performance of the $Fe_2GeO_4$ electrode was improved by coating carbon onto the surface of $Fe_2GeO_4$ particles. The carbon-coated $Fe_2GeO_4$ electrode delivered a high initial discharge capacity of $1144.9mAh\;g^{-1}$ with good capacity retention. The enhanced cycling performance was mainly attributed to the carbon-coated layer that accommodates the volume change of the active materials and improves the electronic conductivity. Our results demonstrate that the carbon-coated $Fe_2GeO_4$ can be a promising anode material for achieving high energy density lithium-ion batteries.

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Intermittent Operation Induced Deactivation Mechanism for HER of Ni-Zn-Fe Electrode for Alkaline Electrolysis (수소발생용 Ni-Zn-Fe 합금 전극의 간헐적 작동에 따른 비활성화 특성)

  • HAN, JIMIN;KIM, JONGWON;BAE, KIKWANG;PARK, CHUSIK;JEONG, SEONGUK;JUNG, KWANGJIN;KANG, KYOUNGSOO;KIM, YOUNGHO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.8-22
    • /
    • 2020
  • In this study, we investigated the deactivation characteristics of Ni-Zn-Fe electrodes due to intermittent operation in alkaline water electrolysis. To find suitable method to accelerate deactivation of electrode, the accelerated stress-test (AST) which repeated on/off step was performed with constant current/voltage control. The AST under constant voltage control is suitable to deactivate electrode so it were selected to investigate deactivation of electrode. The AST which repeated on/off step in range of -1.3 V and 0 V was performed and the relationship between oxidation current and electrode deactivation in the off step was investigate. As results, it was confirmed that the nickel and zinc on electrode surface were oxidized due to anodic current which occurred at off step.