• Title/Summary/Keyword: NiFe film

Search Result 207, Processing Time 0.026 seconds

Reactive Ion Etching of NiFe Film with Organic Resist Mask and Metal Mask by Inductively Coupled Plasma

  • Kanazawa, Tomomi;Motoyama, Shin-Ichi;Wakayama, Takayuki;Akinaga, Hiroyuki
    • Journal of Magnetics
    • /
    • v.12 no.2
    • /
    • pp.81-83
    • /
    • 2007
  • Etching of NiFe films covered with an organic photo-resist or Ti was successfully performed by an inductively coupled plasma-reactive ion etching (ICP-RIE) system using $CHF_3/O_2/NH_3$ discharges exchanging $CHF_3$ for $CH_4$ gas gradually. Experimental results showed that the organic photo-resist mask can be applied to the NiFe etching. In the case of the Ti metal mask, it was found that the etching-selectivity Ti against NiFe was significantly varied from 7.3 to ${\sim}0$ by changing $CHF_3/CH_4/O_2/NH_3$ to $CH_4/O_2/NH_3$ discharges used in the ICP-RIE system. These results show that the present RIE of NiFe was dominated by a chemical reaction rather than a physical sputtering.

The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution (1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구)

  • 윤재돈;강성군
    • Journal of Surface Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

Fabrication and Electrical Properties of Ni-Mn-Co-Fe Oxide Thick Film NTC Thermistors (Ni-Mn-Co-Fe 산화물 후막 NTC 서미스터의 제조 및 전기적 특성)

  • Park, Kyeong-Soon;Bang, Dae-Young;Yun, Sung-Jin;Choi, Byung-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.912-918
    • /
    • 2002
  • Ni-Mn-Co-Fe oxide thick films were coated on an alumina substrate by screening printing technique. The microstructure and electrical properties of the thick films, as a function of composition and sintering temperature, were investigated. The components of the NTC thick films sintered at 1150${\circ}C$ were distributed homogeneously. On the other hand, in the case of the NTC thick films sintered at 1200 and 1250${\circ}C$, Co element was distributed homogeneously, but Ni, Mn and Fe elements were distributed heterogeneously, resulting in the formation of Ni rich and Mn-Fe rich regions. All the thick film NTC thermistors prepared showed a linear relationship between log resistance (log R) and the reciprocal of absolute temperature (1/T), indicative of NTC characteristics. At a given NiO and $Mn_3O_4$ content, the resistance, B constant and activation energy of $(Ni_{1.0}Mn_{1.0}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) and $(Ni_{0.75}Mn_{1.25}Co_{1-x}Fe_x)O_4$ (0.25${\le}$x${\le}$0.75) thermistors increased with increasing $Fe_2O_3$ content.