• Title/Summary/Keyword: NiCuZn ferrites

Search Result 46, Processing Time 0.028 seconds

The Variation of Permeability and$Q_{max}$ Frequency with Processing Parameters in NiCuZn Ferrites (제조 공정 Parameter에 따른 NiCuZn Ferrite의 투자율과 $Q_{max}$ 주파수 변화)

  • 신재영;박지호;박진채;한종수;송병무
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.1
    • /
    • pp.19-24
    • /
    • 1997
  • Composition and process conditions for low temperature sintered NiCuZn ferrites were investigated, so as to fabricate multilayered chip inductor. The$Fe_2O_3$ deficiency for low temperature sintering was decreased with NiO contents of NiCuZn ferrites. The permeability of NiCuZn ferrites can be controlled in the range of 12~562 with the variation of NiO and $Co_3O_4$ contents. The $Q_{max} $ frequency of NiCuZn ferrites was decreased from 50 MHz to 3 MHz linearly with permeability increase from 60 to 560. The relation between the $Q_{max}$ frequency(Y) and permeability(X) of NiCuZn ferrites was expressed with the following empirical equation, logY=4.2-1.4logX.

  • PDF

Microstructure and Magnetic Property of Nanostructured NiZn Ferrite Powder

  • Nam, Joong-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.12
    • /
    • pp.1119-1123
    • /
    • 2002
  • Nanostructured spinel NiZn ferrites were prepared by the sol-gel method from metal nitrate raw materials. Analyses by X-ray diffraction and scanning electron microscopy showed the average particle size of NiZn ferrite was under 50 nm. The single phase of NiZn ferrites was obtained by firing at 250${\circ}C$, resulting in nanoparticles exhibiting normal ferrimagnetic behavior. The nanostructured $Ni_{1-X}Zn_XFe_2O_4$ (x=0.0∼1.0) were found to have the cubic spinel structure of which the lattice constants ${\alpha}_2$ increases linearly from 8.339 to 8.427 ${\AA}$ with increasing Zn content x, following Vegard's law, approximately. The saturation magnetization $M_s$ was 48 emu/g for x=0.4 and decreased to 8.0 emu/g for higher Zn contents suggesting the typical ferrimagnetism in mixed spinel ferrites. Pure NiZn ferrite phase substituted by Cu was observed before using the additive but hematite phase was partially appeared at $Ni_{0.2}Zn_{0.2}Cu_{0.6}Fe_2O_4$. On the other hand, the hematite phase in this NiZn Cu ferrite was disappeared after using the additive of acethyl aceton with small amount. The saturation magnetization Ms of $Ni_{0.2}Zn_{0.8-y}Cu_yFe_2O_4$(y=0.2∼0.6) as measured was about 51 emu/g at 77K and 19 emu/g at room temperature, respectively.

Synthesis of Nano-sized NiCuZn-ferrites for Chip Inductor and Properties with Calcination Temperature (칩인덕터용 NiCuZn-ferrites 나노 분말합성 및 하소 온도에 따른 특성 변화)

  • 허은광;김정식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.31-36
    • /
    • 2003
  • In this study, nano-sized NiCuZn-ferrites for the multi-layered chip inductor application were prepared by a coprecipitation method and its electromagnetic properties were analyzed. Also, the property of low temperature sintering were studied with the initial heat treatment of powder.$(Ni_{0.4-x}Cu_xZn_{0.60})_{1+w}(Fe_2O_4)_{1-w}$ (x=0.2, w=0.03) were calcined at $300^{circ}C~750^{circ}C.$ The sintered NiCuZn-ferrites at $900^{\circ}C$ showed good apparent density $4.90g/cm^3,$ and magnetic properties of initial permeability 164 and quality factor 72. As the calcination temperature increase, the grain size of NiCuZn-ferrite increased with irregular grain distribution and its magnetic properties were deteriorated.

The Effect of Composition on the Properties of NiCuZn ferrites (NiCuZn ferrite의 특성에 미치는 조성의 영향)

  • 남중희;정현학;신재영;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.3
    • /
    • pp.191-196
    • /
    • 1995
  • NiCuZn ferrites were prepared by a solid-state reaction and sintered at $900^{\circ}C$ for 5 hours. Its properties were investigated by controlling the ferrite composition and processing. NiCuZn ferrite with a composition of ${(Ni_{0.2}Cu_{0.2}Zn_{0.6}O)}_{1.02}{(Fe_{2}O_{3})}_{0.98}$ was found to have the maximum initial permeability as a result of the variation of Cu content and the (Ni+Cu)/Zn ratio. Curie temperature($T_{c}$) of NiCuZn ferrite was decreased with the larger Cu content and increased with the larger Ni content. NiCuZn ferrites of ${(Ni_{0.2}Cu_{0.2}Zn_{0.6}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ composition milled for 20~80 hours had the maximum initial permeability at w=-0.015 and Curie temperature ($T_{c}$) was decreased with the increasing of $Fe_{2}O_{3}$ deficiency(w).

  • PDF

Complex Permeability Analysis of NiCuZn Ferrites (NiCuZn 계 페라이트의 조성에 따른 복소투자율 변화 해석)

  • 남중희;오재희
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.6
    • /
    • pp.382-387
    • /
    • 1996
  • The characteristics of the complex permeability of ${(Ni_{x}Cu_{0.2}Zn_{0.8-x}O)}_{1-w}{(Fe_{2}O_{3})}_{1+w}$ with various Ni and $Co_{3}O_{4}$ contents were investigated in this work. It is found that the NiCuZn ferrites with $x{\geq}0.6$ have a relatively small peak width of the imaginary part of permeability $\mu$". The resonance frequency is increased as Ni content becomes higher, where the loss is low. The $\mu$" value decreases with increasing FezO, deficiency, but the resonance frequency($f_{\mu"max}$) is only slightly affected by $Fe_{2}O_{3}$ deficiency. In case of $Co_{3}O_{4}$ addition to the NiCuZn ferrites, the $f_{\mu"max}$ increases since the initial permeability decreases with the amount of $Co_{3}O_{4}$. It is concluded that the Ni content in the NiCuZn ferrite is a dominant factor for the total loss of these spinel ferrites.

  • PDF

Variation of the Relaxation Time for NiCuZn Ferrites with Magnetic Properties

  • Nam, Joong-Hee;Oh, Jae-Hee
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.37-41
    • /
    • 1996
  • The frequency dependence of complex permeability for various NiCuZn ferrites was investigated. The variation of complex permeability for NiCuZn ferrites can be presented as a form of a semi-circle, so called the Cole-Cole plot, and the relaxation phenomena were explained with various shapes of the plots. The relaxation time $\Upsilon$ was calculated from $f_rx$, which is a relaxation frequency at ${\mu"}_{max}$. Relations between anisotropy field $H_A$ and relaxation time $\Upsilon$, initial permeability $\mu_i$ and $H_A$ were plotted to identify the frequency dependence of complex permeability.lity.

  • PDF

Properties of Cu-Contained Spinel Ferrites with Various Cu Contents (Cu계 스피넬 페라이트의 Cu 함량에 따른 특성 변화)

  • 남중희;오재희
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1245-1252
    • /
    • 1996
  • The charcteristics for the copper-contained spinel ferrites such as NiCu-and ZnCu ferrites with various copper content are investigated in this study which can provide a explanation for the behavior of copper in sintering at a low temperatuer. The bulk density and the grain size for these sintered ferrites were increased with the larger amount of copper in compositions. In microstructure of copper-contained spinel ferrites copper exists in the grain boundary which is sintering process. Electrical resistivity and frequency range with maximum Q-facor of NiCu-or ZnCu ferrites were decreased as increasing of copper content in ferrite composition.

  • PDF

Influence of Sintering Temperature on Magnetic Properties of Ni-Zn-Cu Ferrites Used for Mangetic Shielding in NFC (NFC의 자기차폐용 Ni-Zn-Cu 페라이트의 자기특성에 미치는 소결온도의 영향)

  • Ryu, Yo-Han;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.132-135
    • /
    • 2016
  • This study investigates the influence of sintering temperature on the magnetic properties and frequency dispersion of the complex permeability of Ni-Zn-Cu ferrites used for magnetic shielding in near-field communication (NFC) systems. Sintered specimens of $(Ni_{0.7}Zn_{0.3})_{0.96}Cu_{0.04}Fe_2O_4$ are prepared by conventional ceramic processing. The complex permeability is measured by an RF impedance analyzer in the range of 1 MHz to 1.8 GHz. The real and imaginary parts of the complex permeability depend sensitively on the sintering temperature, which is closely related to the microstructure, including grain size and pore distribution. In particular, internal pores within grains produced by rapid grain growth decrease the permeability and increase the magnetic loss at the operating frequency of NFC (13.56 MHz). At the optimized sintering temperature ($1225-1250^{\circ}C$), the highest permeability and lowest magnetic loss can be obtained.

Enhancement of Lowsintering Temperature and Electromagnetic Properties of (NiCuZn)-Ferrites for Multilayer Chip Inductor by Using Ultra-fine Powders (초미세 분말합성에 의한 칩인덕터용 (NiCuZn)-Ferrites의 저온소결 및 전자기적 특성 향상)

  • 허은광;강영조;김정식
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2002
  • In this study, two different (NiCuZn)-ferrite which were fabricated by using ultra-fine powders synthesized by the wet processing and conventionally commercialized powder, were investigated and compared each other in terms of the low temperature sintering and electromagnetic properties. Composition of x and w in $(Ni_{0.4-x}Cu_xZn_{0.6})_{1+w}(Fe_2O_4)_{1-w}$ were controlled as 0.2 and 0.03, respectively. The sintering temperature were $900^{\circ}C$ for ultra-fine powders by way of initial heat treatment and $1150^{\circ}C$ for commercialized powders. The (NiCuZn)-ferrite by ultra-fine powders showed love. sintering temperature than that of commercialized powders by over $200^{\circ}C$, and excellent electromagnetic properties such as the quality factor which is a important factor in the multi-layered chip inductor. In addition, characteristics of B-H hysteresis, crystallinity, microstructure and powder morphology were analyzed by a vibrating sample method(VSM), x-ray diffractometer(XRD), transmission electron microscope (TEM) and scanning electron microscope(SEM).

  • PDF

Effect of Cobalt Substitution on the Magnetic Properties of NiZnCu Ferrite for Multilayer Chip Inductors (Cobalt 치환된 칩인덕터용 NiZnCu Ferrite의 자기적 특성 연구)

  • An, Sung-Yong;Kim, Ic-Seob;Son, Soo-Hwan;Song, So-Yeon;Hahn, Jin-Woo;Choi, Kang-Ryong
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.182-186
    • /
    • 2010
  • Effect of cobalt substitution on the sintering behavior and magnetic properties of a NiZnCu ferrite was studied. $Ni_{0.36-x}Co_xZn_{0.44}Cu_{0.22}Fe_{1.98}O_4(0{\leq}x{\leq}0.04)$ ferrite was fabricated by a solid stat reaction method. It was proposed and experimentally verified that $Co^{2+}$ substituted NiZnCu ferrite was effective on improving the quality factor and magnetic properties of NiZnCu ferrites for multilayer chip inductors. The ferrite was sintered without sintering aids, at $880{\sim}920^{\circ}C$, for 2 h and the initial permeability, quality factor, density, shrinkage, saturation magnetization, and coercivity were also measured. The quality factor (Q) was increased linearly up to x = 0.01 and decreased rapidly over x = 0.01. As the cobalt content increased, the initial permeability and density of the ferrites decreases. The initial permeability of toroidal sample for $Ni_{0.35}Co_{0.01}Zn_{0.44}Cu_{0.22}Fe_{1.98}O_4$ ferrites sintered at $900^{\circ}C$ was 130 at 1 MHz and quality factor was 230.