• Title/Summary/Keyword: NiCr films

Search Result 70, Processing Time 0.022 seconds

A Study of Shielding Property of Magnetic Field for the Film Impregnated with Soft Magnetic Powder (연자성 합금분말을 함침시킨 필름의 자계 차폐 특성 연구)

  • Park, Jong-Hyun;Ra, Keuk-Hwan;Kang, Eun-Kyun;Kim, Jin-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.211-218
    • /
    • 2014
  • In this paper the magnetic field properties of the soft magnetic alloys (Fe-Si-Cr and Fe-Ni-Cr) are studied in advance for the development of electro-magnetic shielding films, which could be used in the IT Devices (NFC, mobile phone, computer, etc.).As a result each of the selected soft magnetic alloy melts of the corresponding compositions is water-dispersed into the disk-shaped grains, which are soaked in polymer resin, and of which two types of thin film of thickness 0.1mm and 1mm are made by passing through the heating calendar roller. And the magnetic permeability and the shielding effectiveness of the polymer films containing the soft magnetic alloy grains are measured over the whole frequency bands from the low frequency to 10GHz. Before the experiments of the soft magnetic alloy, a special equation is proposed to estimate the permeability of the alloy, and the equation is verified with the pre-published data by MATLAB, and from which the most optimal compositions can be decided. And the SE(Shielding Effectiveness) of the polymer films containing the soft magnetic alloy grains is simulated by the HFSS.

Development of advanced laser processing for the fabrication of HTS metallic tapes for power applications (전력용 고온초전도 금속테이프 제작을 위한 첨단 레이저공정 개발)

  • Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.688-691
    • /
    • 1997
  • Good quality superconducting $YBa_2Cu_30_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy (Ni-Cr-Mo alloys) with yttria-stabilized zirconia(YSZ) buffer layers by in situ pulsed laser deposition in a multi-target processing chamber. Generally, Hastelloy exhibits excellent resistance to corrosion, fatigue, thermal shock, impact, and erosion. However, it is difficult to make films on flexible metallic substrates due to interdiffusion problems between metallic substrates and superconducting overlayers. To overcome this difficulty, it is necessary to use YSZ buffer layer since it will not only limit the interdiffusion process but also minimize the surface microcrack formation due to smaller mismatch between the film and the substrate. In order to enhance the crystallinity of YBCO films on metallic substrates, YSZ buffer layers were grown at various temperatures different from the deposition temperature of YBCO films. On YSZ buffer layer grown at higher temperature than that for depositing YBCO film, the YBCO thin film was found to be textured with c-axis orientation by x-ray diffraction and had a zero-resistance critical temperature of about 85K.

  • PDF

Characteristic of PECVD-$WN_x$ Thin Films Deposited on $Si_3N_4$ Substrate ($Si_3N_4$ 기판 위에 PECVD 법으로 형성한 Tungsten Nitride 박막의 특성)

  • Bae, Seong-Chan;Park, Byung-Nam;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.7
    • /
    • pp.17-25
    • /
    • 1999
  • Tungsten nitride($WN_x$) films were deposited by PECVD method on silicon nitride($WSi_3N_4$) substrate. The characteristics of $WN_x$ film were investigated with changing various processing parameters ; substrate temperature, gas flow rate, rf power, and different nitrogen sources. The nitrogen composition in $WN_x$ film varied from 0 to 45% according to the $NH_3$ and $N_2$ flow rate. The highest deposition rate of 160 nm/min was obtained for the $NH_3$ gas and relatively low deposition rate of $WN_x$ films were formed by $N_2$ gas. $WN_x$ films deposited on $WSi_3N_4$ substrate had higher deposition rate than that of TiN and Si substrates. The purity of $WN_x$ film were analyzed by AES and higher purity $WN_x$ films were deposited using $NH_3$ gas. The XRD analysis indicates a phase transition from polycrystalline tungsten(W) to amorphous tungsten nitride($WN_x$), showing improved etching profile of $WN_x$ films Thick $WN_x$ films were deposited on various substrates such as Tin, NiCr and Al and maximum thickness of $1.6 {\mu}m$ was obtained on the Al adhesion layer.

  • PDF

Corrosion resistance at high temperature condition of Cr Films Formed on hot-dip Al-Si plated steel sheet (용융Al-Si도금 강재에 형성한 Cr 막의 고온 환경 중 내식특성)

  • Gang, Min-Ju;Lee, Seung-Hyo;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.448-459
    • /
    • 2022
  • Generally, steel is the most commonly used in the industry because of good strength, processability and cost-effectiveness. Steel can be surface-treated such as coating or used as an alloy by adding elements such as Cr, Ni, Zr, and Al to increase corrosion resistance. However, even if steel is used in same environment corrosion resistance is sharply lowered when it is exposed to a high temperature for a fixed or extended period of time due to an overload or other factors. In particular, the use of hot-dip aluminized plated steel, which is used in high-temperature atmospheres, is increasing due to the surface Al2O3 oxide film. This steel necessitates an urgent solution as issues of corrosion resistance limitations often appear. It is an important issue that not only cause analysis but also the research for the surface treatment method that can be solved. Thus, in this study, Cr in which it is expected to be effective in corrosion resistance and heat resistance attempted to deposit on hot dip aluminized plated steel with PVD sputtering. And it was possible to present the surface treatment application of various types of industrial equipment exposed to high temperature and basic design guidelines for use by confirming the corrosion resistance of hot dip Al-Si plated steel with Cr film deposited at high temperature.

Multimode fiber-optic pressure sensor based on dielectric diaphragm (유전체 다이아프램을 이용한 다모드 광섬유 압력센서)

  • 김명규;권대혁;김진섭;박재희;이정희;손병기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.220-226
    • /
    • 1997
  • An optical intensity-type pressure sensor has been fabricated by coupling multimode optical fiber with 100 nm-Au/30 nm-NiCr/150 nm-$Si_3N_4/300 nm-SiO_2/150 nm-Si_3N_4$ optical reflection layer supported by micromachined frame-shape silicon substrate, and its characteristics was investigated. For the application of $Si_3N_4/SiO_2/Si_3N_4$ diaphragm to the optical reflection layer of the sensor, NiCr and Au films were deposited on the backside of the diaphragm by thermal evaporation , respectively, and thus optical low caused by transmission in the reflection layer could be decreased to a few percents. Dielectric diaphragms with uniform thickness were able to be also reproduced because top- and bottom-$Si_3N_4$ layer of the diaphragm could automatically stop silicon anisotropic etching. The respective pressure ranges in which the sensor showed linear optical output power-pressure characteristics were 0~126.64 kPa, 0~79. 98 kPa, and 0~46.66 kPa, and the respective pressure sensitivities of the sensor were about 20.69 nW/kPa, 26.70 nW/kPa, and 39.33 nW/kPa, for the diaphragm sizes of 3$\times$3 $\textrm{mm}^2$, 4$\times$4 $\textrm{mm}^2$, and 5$\times$5 $\textrm{mm}^2$, indicating that the sensitivity increases as diaphragm size increases.

  • PDF

Simultaneous Quench Analysis of a Three-Phase 6.6 kV Resistive SFCL Based on YBCO Thin Films (YBCO 박막을 이용한 3상 6.6kV 항형 초전도 한류기의 동시Quench 분석)

  • Sim J;Kim H. R;Hyun O. B
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • We fabricated a resistive type superconducting fault current limiter (SFCL) of 3-phase $6.6 kV_{rms}$ / rating, based on YBCO thin films grown on sapphire substrates with a diameter off inch. Each element of the SFCL was designed to have the rated voltage of $600 V_{rms}$ $/35A_{rms}$. The elements produced a single phase with 8${\times}$6 components connected in series and parallel. In addition, a NiCr shunt resistor of 23 $\Omega$ was connected in parallel to each of them for simultaneous quenches between the elements. Prior to investigating the performance of the 3 phase SFCL, we examined the quench characteristics for 8 elements connected in series. For all elements, simultaneous quenches and equal voltage distribution within 10% deviation from the average were obtained. Based on these results, performance of the SFCL for single line-to-ground faults was investigated. The SFCL successfully limited the fault current of $10 kA_{ rms}$ below 816 $A_{peak}$ within 0.12 msec right after the fault occurred. During the quench process, average temperature of all components did not exceed 250 K, and the SFCL was totally safe during the whole operation.

  • PDF

Effect of buffer layer on YBCO film deposited on Hastelloy substrate ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.873-875
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_{2}Cu_{3}O_{7-\delta}$ thin films on Hastelloy(Ni-Cr-Mo alloys) metallic substrate with $CeO_2$ and $BaTiO_3$ buffer layers in-situ by pulsed laser deposition in a multi-target processing chamber. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with YBCO. $CeO_2$ layer may be helpful for power transmission due to its conducting property. In order to enhance the crystallization of YBCO films on metallic substrates. we deposited $CeO_2$ and $BaTiO_3$ buffer layers at various temperatures. The YBCO superconducting tape fabricated with $BaTiO_3$ and $CeO_2$ buffer layers shows 85K of transition temperature and about $8.4{\times}10^4A/cm^2$ of critical current density at 77K.

  • PDF

Fabrication and Reliability Properties of Thin film Resistors with Low Temperature Coefficient of Resistance (낮은 저항온도계수를 갖는 박막 저항체 제작 및 신뢰성 특성 평가)

  • Lee, Boong-Joo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.352-356
    • /
    • 2007
  • The Ni/Cr/Al/Cu (51/41/4/4 wt%) thin films were deposited by using DC magnetron sputtering method for the application of the resistors having low TCR (temperature coefficients of resistance) and high resistivity from the former printed-results[3]. The TCR values measured on the as-deposited thin film resistors were less than ${\pm}10\;ppm/^{\circ}C$ and $-6{\sim}+1\;ppm/^{\circ}C$ after annealing and packaging process. The TCR values were $-3{\sim}1\;ppm/^{\circ}C$ (ratio of variation : about 0.02 %) and $-30{\sim}20\;ppm/^{\circ}C$ (ratio of variation : about $0.5{\sim}1\;%$) for the thermal cycling and PCT (pressure cooker test), respectively. It was confirmed that the reliability properties of the thin film resistor were good for electronic components.

Change of crystallization and properties of YBCO thin film by phase transition of $CeO_2$ ($CeO_2$의 상전이에 따른 YBCO 박막의 결정성 및 특성의 변화)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1590-1592
    • /
    • 1999
  • We have fabricated good quality superconducting $YBa_2Cu_3O_{7-{\delta}}$ thin films on Hastelloy(Ni-Cr-Mo alloys) with $CeO_2$ buffer layers by in-situ pulsed laser deposition in a multi-target processing chamber. Using one of electrical properties of YBCO superconducting which the resistance approaches to zero dramatically on transition temperature, we have researched to make power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to make films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting layer and non-crystallization of YBCO on amorphous substrate. From early research, two ways-using textured metallic substrate and buffer layer-were proposed to overcome theses difficulties. We have chosen $CeO_2$ as a buffer layer which has cubic structure of $5.41{\AA}$ lattice parameter and only 0.2% of lattice mismatch with $3.82{\AA}$ of a-axis lattice parameter of YBCO on (110) direction of $CeO_2$. In order to enhance the crystallization of YBCO films on metallic substrates we deposited $CeO_2$ buffer layers at varying temperature $700^{\circ}C$ to $800^{\circ}C$ and $O_2$ pressure. By X-ray diffraction, we found that each domination of (200) and (111) orientations were strongly relied upon the deposition temperature in $CeO_2$ layer and the change of the domination of orientation affects the crystallization of YBCO upper layer.

  • PDF

Effect of CeO$_2$ buffer layer on the crystallization of YBCO thin film on Hastelloy substrate (비정질 금속 기판상에 증착된 YBCO 박막의 결정성에 대한 CEO$_2$ 완충막의 효과)

  • Kim, Sung-Min;Lee, Sang-Yeol
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.392-396
    • /
    • 1999
  • Superconducting YBa$_2Cu_3O_{7-{\delta}}$(YBCO) thin films were grown on Hastelloy(Ni-Cr-Mo alloys) with CeO$_2$ buffer layer in-situ by pulsed laser deposition in a multi-target processing chamber. To apply superconducting property on power transmission line, we have deposited YBCO thin film on flexible metallic substrate. However, it is difficult to grow the YBCO films on flexible metallic substrates due to both interdiffusion problem between metallic substrate and superconducting overlayers and non-crystallization of YBCO on amorphous substrate. It is necessary to use a buffer layer to overcome the difficulties. We have chosen CeO$_2$ as a buffer layer which has cubic structure of 5.41 ${\AA}$ lattice parameter and only 0.2% of lattice mismatch with 3.82 ${\AA}$ of a-axis lattice parameter of YBCO on [110] direction of CeO$_2$ In order to enhance the crystallization of YBCO films on metallic substrates, we deposited CeO$_2$ buffer layers with varying temperature and 02 pressure. By XRD, it is observed that dominated film orientation is strongly depending on the deposition temperature of CeO$_2$ layer. The dominated orientation of CeO$_2$ buffer layer is changed from (200) to(111) by increasing the deposition temperature and this transition affects the crystallization of YBCO superconducting film on CeO$_2$ buffered Hastelloy.

  • PDF