• Title/Summary/Keyword: NiCr

Search Result 1,884, Processing Time 0.029 seconds

A Study on Bond Strength of Procelain with Non Precious Alloy (도재전장관용 비귀금속합금과 도재의 융착결합에 관한 연구)

  • Kang, Sung-Hyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.18 no.1
    • /
    • pp.49-57
    • /
    • 1980
  • The adhesive mechanisms on the metal-ceramic restorations have been reported to be mechanical interlocking, chemical bonding, compressive force, and Van der Waal's force, etc. Of these, the mechanical interlocking and chemical bonding forces are thought to affect the adhesive force between Ni-Cr alloy and porcelain. This study investigates the adhesion of Ni-Cr alloy to porcelain according to surface treatment. For this purpose, the following experiments were made; The compositions of Ni-Cr alloy as cast by emission spectrograph, and the oxides produced on Ni-Cr alloy during degassing at $1850^{\circ}F$ for 30 minutes in air and in vacuum were analyzed by X-ray diffractograph. The metal phases of Ni-Cr alloy were observed according to porcelain-baking cyclic heat treatment by photo microscope and the distribution and the shift of elements of Ni-Cr alloy and porcelain and the failure phases between Ni-Cr alloy and porcelain by scanning electron microscope. The adhesive force between Ni-Cr alloy and porcelain was measured according to surface treatment with oxidization and roughening by Instron Universal Testing Machine. Results were as follows; 1. The metal phases of Ni-Cr alloy as cast and degassing state showed the enlarged and fused core, but when subjected to porcelain-baking cyclic heat treatment, showed a dendrite growing. 2. The kinds of metal oxides produced on Ni-Cr alloy during degassing were found to be NiO and $Cr_2O_3$. 3. The distribution of elements at the interface of Ni-Cr alloy and porcelain in degassing state showed demarcation line, but in roughening state, showed mechanical interlocking phase. 4. The shift of elements at the interface occurred in both states, but the shift amount was found to be larger in roughening than in degassing. 5. The adhesive force between Ni-Cr alloy and porcelain was found to be $3.45{\pm}0.93kg/mm^2$, in degassing and $3.82{\pm}0.99kg/mm^2$, in roughening. 6. The failure phase between Ni-Cr alloy and porcelain showed the mixed type failure.

  • PDF

Optical Properties of Photoferroelectic Semiconductors IV.(Optical Properties of SbSI:V, SbSeI:V, BiSI:V, BiSeI:V, SbSI:Cr, SbSeI:Cr, BiSI:Cr, BiSeI:Cr, SbSI:Ni, SbSeI:Ni, BiSI:Ni and BiSeI:Ni Single Crystals) (Photoferroelectric 반도체의 광학적 특성 연구 IV. (SbSI:V, SbSeI:V, BiSI:V, BiSeI:V, SbSI:Cr, SbSeI:Cr, BiSI:Cr, BiSeI:Cr, SbSI:Ni, SbSeI:Ni, BiSI:Ni 및 BiSeI:Ni 단결정의 광학적 특성에 관한 연구))

  • Oh, Seok-Kyun;Hyun, Seung-Cheol;Yun, Sang-Hyun;Kim, Wha-Tek;Kim, Hyung-Gon;Choe, Sung-Hyu;Yoon, Chang-Sun;Kwun, Sook-Il
    • Journal of the Korean Vacuum Society
    • /
    • v.2 no.2
    • /
    • pp.236-245
    • /
    • 1993
  • Single crystals, SbSI : V, SbSeI : V, BiSI : V, BiSeI : V, SbSI : Cr, SbSeI : Cr, BiSI : Cr, BiSeI : Cr, SbSI : Ni, SbSeI : Ni, BiSI : Ni, and BiSeI : Ni were grown by the vertical Bridgman method. It is found that the grown single crystals have an orthorhombic structure and the indirect optical transitions. The temperature dependence of energy gap shows the two reflection point related with the phase transitions and is well fitted with Varshni equation in the continuous region. The optical absorption peaks due to the doped impurities (V, Cr and Ni) are respectively attributed to the electron transitions between the split energy levels of $V^{+2}$, $Cr^{+2}$ and $Ni^{+2}$ ions sited at $T_d$ symmetry of the host lattice.

  • PDF

Characterization of Oxide Scales Formed on Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al and Ni3Al-Cr Alloys (Fe3Al, Fe3Al-Cr, Fe3Al-Cr-Mo, Ni3Al 및 Ni3Al-Cr 합금표면에 형성된 산화물 특성분석)

  • Shim, Woung-Shik;Lee, Dong-Bok
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.845-849
    • /
    • 2002
  • Alloys of $Fe_3$Al, $Fe_3$Al-6Cr, $Fe_3$Al-4Cr-1Mo, $Ni_3$Al, and $Ni_3$Al-2.8Cr were oxidized at $1000^{\circ}C$ in air, and the oxide scales formed were studied using XRD. SEM, EPMA, and TEM. The oxide scales that formed on $Fe_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$ containing a small amount of dissolved Fe and Cr ions, whereas those that formed on $Ni_3$Al-based alloys consisted primarily of $\alpha$-$Al_2$$O_3$, together with a small amount of $NiAl_2$$O_4$, NiO and dissolved Cr ions. For the entire alloys tested, nonadherent oxide scales formed, and voids were inevitably existed at the scale-matrix interface.

A manufacturing process and characteristic observation of alloy blocks for dental CAD/CAM system (치과 CAD/CAM 가공용 합금블럭 제조 및 특성 관찰)

  • Kim, Chi-young
    • Journal of Technologic Dentistry
    • /
    • v.40 no.3
    • /
    • pp.125-131
    • /
    • 2018
  • Purpose: Automatic dental prosthesis manufacturing process was accelerated by the spread of dental CAD / CAM system. The CAD / CAM system with milling alloys were needed supplement. So, sintered alloy blocks were introduced. In this study, we want to study sintered alloy block. And to evaluate the alloy block manufacture and alloy properties. Methods: The alloy powders were prepared by high pressure water dispersion method. The sintered alloy blocks were prepared by low temperature pressing method. Their components observation were EDX, and the alloy structure was observed by XRD. Results: Co-Cr alloy powders were observed to have a circle shape with an average diameter of about $100{\mu}m$ and a Ni-Cr alloy powder had a circle shape with an average diameter of about $50{\mu}m$. The Co-Cr alloy block is composed of Co (34.62 wt%), Cr (17.33 wt%), Mo (2.98 wt%), Si (0.36 wt%) and C (44.17 wt%). The Ni-Cr alloy powder was composed of Ni (40.29 wt%), Cr (19.37 wt%), Mo (3.53 wt%), Si (0.52 wt%) and C (33.18 wt%). The peak of the Co and CoCr peaks were observed in the CoCr alloy body by the means of XRD study. Cr2Ni3 of the peak was observed in the Ni-Cr alloy material. Conclusion : As a result, the following conclusions were obtained. 1. Prepared by high-pressure water-law Co-Cr alloy powder has an average diameter $100{\mu}m$, Ni-Cr alloy powder was found to have the form of sphere having an average diameter $50{\mu}m$. 2. Co-Cr alloy and Ni-Cr alloy block produced by low-temperature processing showed a certain ratio. 3. In the XRD study, Co phase appeared in Co-Cr alloy block after sintering. and Cr2Ni3 phase appeared in Ni-Cr alloy block after sintering.

Shear Bonding Strength by the Characteristic of Metal Oxidation on the Surface of Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr 합금의 표면산화물특성에 따른 전단결합강도 관찰)

  • Chung, In-Sung;Kim, Chi-Young
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.359-364
    • /
    • 2013
  • Purpose: This study was to observe characteristic of metal oxidation and bonding strength according to composition of Ni-Cr alloy for porcelain fused to metal crown. The three kinds of Ni-Cr alloy with different composition ratio of parent metal were observed general properties and chemical properties of each alloy surface and measured the shear bonding strength between ceramic and each alloys. The aim of study was to suggest the material for design of parent metal's composition ratio to development of alloy for porcelain fused to metal crown. Methods: The three kinds of alloy as test specimen was Ni(59wt%)-Cr(24wt%), Ni(67wt.%)-Cr(16wt.%) alloy and Ni(71wt%)-Cr(12wt%)alloy. The oxide on surface was observed by EDX. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{59}Cr_{24}$ alloy measured 23.03wt%, $Ni_{67}Cr_{16}$ alloy measured 21.13wt% and $Ni_{71}Cr_{12}$ alloy was measured 48.55wt%. And the maximum shear bonding strength was measured 58.02Mpa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H2 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H2 specimens.

Effects of Mo on the Passive Films Formed on Ni-(15, 30)Cr-5Mo Alloys in pH 8.5 Buffer Solution

  • Jang, Hee-Jin;Kwon, Hyuk-Sang
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.258-262
    • /
    • 2009
  • The composition and semiconducting properties of the passive films formed on Ni- (15, 30)Cr-5Mo alloys in pH 8.5 buffer solution were examined. The depth concentration profile of passive films formed on Ni-(15, 30)Cr-5Mo in pH 8.5 buffer solution showed that Mo enhances the enrichment of Cr. The Mott-Schottky plot for the passive film on Ni-(15, 30)Cr- 5Mo closely resembled that for the film on Cr, whereas those for the less Cr-enriched film on Mo-free alloys showed similar behavior to that for the film on Ni. The acceptor density was reduced by increasing Cr content in Ni-(15, 30)Cr-(0, 5)Mo alloys, but addition of Mo considerably increased the acceptor density.

Microstructural Features of Multicomponent FeCoCrNiSix Alloys

  • Kong, Kyeong Ho;Kim, Kang Cheol;Kim, Won Tae;Kim, Do Hyang
    • Applied Microscopy
    • /
    • v.45 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • The microstructural features of FeCoCrNi, FeCoCrNiAl and FeCoCrNiSix (x=0, 5, 10, 15, 20) alloys have been investigated in the present study. The microstructure of FeCoCrNi alloy changes dramatically with equiatomic addition of Al. The fcc irregular shaped grain structure in the as-cast FeCoCrNi alloy changes into the bcc interconnected structure with phase separation of Al-Ni rich and Cr-Fe rich phases in the as-cast FeCoCrNiAl alloy. The microstructure of FeCoCrNi alloy changes with the addition of Si. With increasing the amount of Si, the fcc structure of the grains is maintained, but new phase containing higher amount of Si forms at the grain boundary. As the amount of Si increases, the fraction the Si-rich grain boundary phase increases.

Study on the Control of the Erosion-Corrosion for Ni-Cr Alloy Sprayed Coating in the Marine Environment (해양환경 중에서 Ni-Cr 용사피복재의 침식-부식 억제에 관한 연구)

  • Lim, U.J.;Lee, S.Y.;Yun, B.D.
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.11 no.2
    • /
    • pp.139-149
    • /
    • 1999
  • Thermal sprayed Ni-Cr alloy coating on the carbon steel was carried out erosion-corrosion test and electrochemical corrosion test in the marine environment. The erosion-corrosion behavior and electrochemical corrosion characteristics of substrate(SS400) and thermal sprayed Ni-Cr coating was investigated. The erosion-corrosion control efficiency of Ni-Cr coating to substrate was also estimated quantitatively. The main results obtained are as follows : 1) The weight loss rate of Ni-Cr coating layer by the erosion-corrosion compared with substrate was smaller. With the lapse of time, the weight loss rate of substrate was linearly increased in $25{\Omega}{\cdot}cm$ solution, but that of Ni-Cr coating became stable. 2) The corrosion potential of substrate became less noble than that of Ni-Cr coating layer, and the corrosion current density of Ni-Cr coating became lower than that of substrate. 3) The control efficiency of erosion-corrosion of Ni-Cr coating compared to substrate became more dull than that of corrosion in $25{\Omega}{\cdot}cm$ and $5000{\Omega}{\cdot}cm$ solution.

  • PDF

Adhesion Strength and Interface Chemistry with Cr, 50%Cr-50%Ni or Ni Buffer Layer in Cu/buffer Layer/polyimide System (Cu/buffer layer/polyimide 시스템에서 Cr, 50%Cr-50%Ni 및 Ni 버퍼층에 따른 접착력 및 계면화학)

  • Kim, Myung-Han
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.119-124
    • /
    • 2009
  • In the microelectronics packaging industry, the adhesion strength between Cu and polyimide and the thermal stability are very important factors, as they influence the performance and reliability of the device. The three different buffer layers of Cr, 50%Cr-50%Ni, and Ni were adopted in a Cu/buffer layer/polyimide system and compared in terms of their adhesion strength and thermal stability at a temperature of $300^{\circ}C$ for 24hrs. A 90-degree peel test and XPS analysis revealed that both the peel strength and thermal stability decreased in the order of the Cr, 50%Cr-50%Ni and Ni buffer layer. The XPS analysis revealed that Cu can diffuse through the thin Ni buffer layer ($200{\AA}$), resulting in a decrease in the adhesion strength when the Cu/buffer layer/polyimide multilayer is heat-treated at a temperature of $300^{\circ}C$ for 24hrs. In contrast, Cu did not diffuse through the Cr buffer layer under the same heat-treatment conditions.

Observation of Shear Bonding Strength by Compositional Change and Firing Steps of the Ni-Cr Alloy for Porcelain Fused Metal Crown (금속-도재관용 Ni-Cr합금의 조성변화와 소성단계에 따른 전단결합강도)

  • Cho, Yong-Wan;Hong, Min-Ho;Kim, Won-Young;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • Purpose: This study was observation shear bonding strength by compositional change and firing step of a Ni-Cr alloy for porcelain fused metal crown. The aim of study was to suggest the material for firing step of Ni71-Cr14 alloy to development of alloy for porcelain fused to metal crown. Methods: The test was on the two kinds of Ni-Cr alloy specimens. The surfaces of two alloys were analyzed by EDX in order to observe oxide characteristic. And the shear test was performed by MTS. Results: The surface property and oxide characteristic analysis of oxide layer, weight percentage of Element O within $Ni_{71}Cr_{14}$ alloy measured 23.32wt%, and $Ni_{59}Cr_{24}$ alloy was measured 23.03wt%. And the maximum shear bonding strength was measured 58.02MPa between $Ni_{59}Cr_{24}$ alloy and vintage halo(H4 group). Conclusion: The surface property and oxide characteristic three kind of Ni-Cr alloy was similar. and shear bonding strength showed the highest bonding strength in H4 specimens.