• 제목/요약/키워드: Ni-resist cast iron

검색결과 2건 처리시간 0.014초

주철 소지상에 용융알루미늄 도금시 철 규소 및 아연의 영향 (Effects of Iron, Silicon and Zinc Contained in Molten Aluminum on Aluminizing of Cast Iron)

  • 최종술;문성욱
    • 한국표면공학회지
    • /
    • 제20권4호
    • /
    • pp.144-153
    • /
    • 1987
  • In the case of dipping the Ni-Resist cast iron into molten aluminum with iron content, the thickness of intermetallic compound was remarkably increased with increasing iron content. The thickness was shown by following equation in the range of 1-3% iron content; $x=22.5t^{1/2}+4.47{\cdot}t{\cdot}(Fe%)$. where, x is thickness(${\mu}m$), t the time (minute), Fe% the iron w/o. When the Ni-Resist cast iron was dipped into the molten aluminum containing zinc content, the intermetallic compound thickness was also increased with increasing zinc contents. And thickness was represented by the following equation in the range of 2-10% zinc content; $x=3.46t^{1/2}+0.27{\cdot}t{\cdot}(Zn%)$. However, in the case of dipping the Ni-resist cast iron into molten aluminum with silicon content, the thickness of intermetallic compound was decreased with increasing silicon content, as shown in the following equation; $x=7.17t^{1/2}-0.15{\cdot}t{\cdot}(Si%)$. The intermetallic compound formed onto Ni-Resist cast iron was identified to be $FeAl_3\;and\;Fe_3Al$. As the result of hardness measurement, the peak hardness appeared in the intermetallic compound at near interface of the cast iron and the compound.

  • PDF

고규소 고몰리브덴 구상흑연주철, 고규소 고몰리브덴 C. V. 주철 및 Ni-resist 주철 특성의 비교 평가 (Comparative Evaluation of the Characteristics of High Si-High Mo Ductile Cast Iron, High Si-High Mo C. V. Cast Iron and Ni-resist Cast Iron)

  • 주영규;최경환;이상목;김명호;윤상원;이경환
    • 한국주조공학회지
    • /
    • 제29권3호
    • /
    • pp.120-127
    • /
    • 2009
  • The characterestics of high Si-high Mo ductile cast iron, high Si-high Mo C.V. cast iron and Ni-resist cast iron were compared and evaluated. The nodule count of the last one was lower and the nodularity was higher than those for the first one, respectively. The first two had ferritic matrices with small amounts of molybdenum carbides. The first one had the highest tensile strength and the last one the lowest elongation. This had the highest high temperature strength and that of the second one was greatly increased from the room temperature strength. The volumes of the first two were decreased during cooling and that of the last one changed little. The thermal expansion coefficient of the last one was the highest and the first one the lowest. During high temperature oxidation, even though the volume of the first one was increased, the weight was decreased and the volume and weight of the second one were increased. The change of the increased weight of the last one was more than that of thickness.