• 제목/요약/키워드: Ni-metal hydride

검색결과 66건 처리시간 0.024초

전기자동차용 Ni/MH 전지 Module의 열관리기술 (Thermal Management of a Ni/MH Battery Module for Electric Vehicle)

  • 김준범
    • 공업화학
    • /
    • 제8권6호
    • /
    • pp.1034-1040
    • /
    • 1997
  • 전기자동차의 동력원으로 사용되는 90Ah급 Nickel/Metal hydride 전지 11개로 구성된 module의 온도특성을 상용 software인 NISA II를 사용하여 해석하였다. 전지 module에 대한 element수를 감축하기 위하여 열전도도가 다른 여러 층을 통하여 전달되는 열흐름에 대한 해석을 전기저항 등가식을 사용하여 단순화하였으며, Cartesian coordinate의 축별로 다른 열전도도를 삽입하는 orthotropic model을 사용하였다. 전지 module의 온도를 낮추기 위하여 알루미늄 재질의 cooling fin을 전지와 전지사이에 삽입하여 실험을 수행하였고, 전지 module 최외곽에 위치한 fin에 의한 최고온도의 강하 효과는 미미하다는 결과를 얻었다. 전지 module내 전지별 온도차이를 극소화하기 위하여 cooling fin의 개수와 두께 그리고 측면 fin의 복합적인 영향에 대한 실험을 수행하였으며, 1mm 두께의 알루미늄 fin을 4개 사용하여 module내 전지별 최고온도의 차이를 $3^{\circ}C$ 이내로 줄일 수 있었다.

  • PDF

Hydrogen Generation through the Reaction with Water of MgO, MgCl2 or Ni+Nb2O5 - Added Magnesium Hydrides

  • Hong, Seong-Hyeon;Kim, Hyun-Jin;Song, Myoung Youp
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.183-190
    • /
    • 2012
  • Hydrogen was generated by the reaction of metal hydride with water. The variation of hydrogen generation with the kind of powders (milled $MgH_2$, and $MgH_2$ milled with various contents of MgO, $MgCl_2$ or $Ni+Nb_2O_5$) was investigated. $MgH_2$ powder with a hydrogen content of 6.05 wt% from Aldrich Company was used. Hydrogen is generated by the reaction of Mg as well as $MgH_2$ with water, resulting in the formation of byproduct $Mg(OH)_2$. For about 5 min of reaction time, milled $95%MgH_2+5%MgO$ has the highest hydrogen generation rate among milled $MgH_2+x%MgO$ (x=0, 5, 10, 15 and 20) samples. Milled $90%MgH_2+10%MgCl_2$ has the highest hydrogen generation rate among all the samples.

화성처리 및 성형화에 따른 금속수소화물의 평형특성 및 수소흡장거동 (Equilibrium and Hydriding Characteristics of Metal Hydride Chemical-Treated and Compacted in Pellet)

  • 박찬교;조태환
    • 한국수소및신에너지학회논문집
    • /
    • 제5권1호
    • /
    • pp.9-17
    • /
    • 1994
  • Activation behavior, hydriding rate and disintegration were studied for a compact in pellet form and hydrogen storage alloy particles treated with newly developed inorganic solution. Cylindrical disc of 12.95mm diameter and of 7.1mm thickness was prepared by compressing(8ton) a mixture of $MmNi_{4.5}Al_{0.47}$ and PTFE. Chemical treatment of particles with 1mol of solution was performed at room temperature for several hours until the pH of solution did not change. Chemical treatment made much accelerated activation without any incubation period which generally exists in the untreated alloys and the hydriding reaction rate after full activation also was improved.

  • PDF

Nafion 115를 사용한 DMFC MEA 의 성능실험 (Performance of a direct methanol fuel cell (DMFCs)Using Nation 115)

  • 최훈;황용신;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristic, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results rate compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

Mm계 금속수소화물의 Co함량에 따른 열 및 물질전달특성 (Heat and Mass Transfer Properties of Mm-Based Metal Hydride upon Co Content)

  • 박찬교
    • 한국수소및신에너지학회논문집
    • /
    • 제15권2호
    • /
    • pp.144-151
    • /
    • 2004
  • The effect of the cobalt content on the thermodynamic and, heat and mass transfer properties of the $MmNi_{5-y}B_{y-z}C_z(y=0.5{\sim}1.5,\;z=0.5)$hydrogen storage alloys has been studied systematically. The P-C isotherms curves show that with increasing cobalt content in the alloys, the plateau pressure of the hydrogen absorption and desorption and enthalpy(${\Delta}H$) increases steeply and the plateau region becomes flat, while entropy(${\Delta}S$) decreases. Also at the constant cobalt content the hydrogen transfer rate decreases with the reaction temperature, while the initial reaction kinetics increases. But the initial reaction with hydrogen completes within 1min, although the reaction proceeds about 30minutes thereafter.

Characterization of GaN on GaN LED by HVPE method

  • Jung, Se-Gyo;Jeon, Hunsoo;Lee, Gang Seok;Bae, Seon Min;Kim, Kyoung Hwa;Yi, Sam Nyung;Yang, Min;Ahn, Hyung Soo;Yu, Young Moon;Kim, Suck-Whan;Cheon, Seong Hak;Ha, Hong Ju;Sawaki, Nobuhiko
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc1호
    • /
    • pp.128-131
    • /
    • 2012
  • The selective area growth light emitting diode on GaN substrate was grown using mixed-source HVPE method with multi-sliding boat system. The GaN substrate was grown using mixed-source HVPE system. Te-doped AlGaN/AlGaN/Mg-doped AlGaN/Mg-doped GaN multi-layers were grown on the GaN substrate. The appearance of epi-layers and the thickness of the DH was evaluated by SEM measurement. The DH metallization was performed by e-beam evaporator. n-type metal and p-type metal were evaporated Ti/Al and Ni/Au, respectively. At the I-V measurement, the turn-on voltage is 3 V and the differential resistance is 13 Ω. It was found that the SAG-LED grown on GaN substrate using mixed-source HVPE method with multi-sliding boat system could be applied for developing high quality LEDs.

Non-Stoichiometric Zr-Based 라베스상 수소저장합금의 방전특성 (The electrode characteristics of non-stoichiometric Zr-based Laves phase alloys)

  • 김동명;정재한;이한호;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제7권1호
    • /
    • pp.11-18
    • /
    • 1996
  • The Laves phase alloy hydrides have some promising properties as electrode materials in reversible metal hydride batteries. In this work, the hydrogen storage performance, crystallographic parameters, surface morphology, surface area and electrochemical characteristics of the non-stoichiometric $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$, $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$($\alpha$ =0.0, 0.2, 0.4, 0.6) alloys were examined. These as-cast alloys were found to have mainly a cubic C15-type Laves phase structure by X -ray diffraction analysis. The equilibrium pressure of the alloy were increased as $\alpha$ increased in both two types alloy. In case of $ZrMn_{0.5}V_{0.5}Ni_{1.4+{\alpha}}$ alloys, discharge efficiency and the rate capability of the alloy were decreased as $\alpha$ increased but, these values were increased in case of $ZrMn_{0.3}V_{0.7}Ni_{1.4+{\alpha}}$ alloys. The differences of these electrode properties observed were dependent on the reaction surface area and the catalytic activity of unit area of the each electrode.

  • PDF

폐니켈수소전지에서 회수된 희토류복합 침전분말로부터 세륨 회수에 대한 연구 (A Study on the Separation of Cerium from Rare Earth Precipitates Recovered from Waste NiMH Battery)

  • 김보람;안낙균;이상우;김대원
    • 자원리싸이클링
    • /
    • 제28권6호
    • /
    • pp.18-25
    • /
    • 2019
  • 폐니켈수소전지에 함유되어 있는 세륨을 회수하기 위하여 침출 및 침전을 통해 회수한 희토류복합 침전분말을 수산화나트륨(NaOH) 수용액에 반응온도 70 ℃ 및 반응시간 4시간의 조건에서 이온치환반응을 통하여 희토류 수산화물로 변환시켰다. 이후 희토류 수산화물은 반응온도 80 ℃에서 반응시간 4시간의 조건에서 공기를 주입하며 산화반응을 통해 세륨을 Ce3+에서 Ce4+로 전환시켰다. 세륨의 산화율은 XPS 분석을 통해 약 25 %로 확인하였으며, 산화반응이 완료된 분말은 묽은 황산에 대한 용해도 차이를 이용하여 세륨과 나머지 희토류를 분리하였다. 최종적으로 회수된 분말은 XRD 분석을 통해 수산화세륨(Ce(OH)4)의 결정상을 확인하였으며, 이때 세륨의 순도는 약 94.6 %, 회수율은 97.3 %를 나타내었다.

수소저장합금을 이용한 수소자동차 연료저장탱크의 수소흡수-방출거동에 관한 연구 (Hydrogen Absorption and Desorption Behaviors of the Metal Hydride Fuel Tank for Hydrogen Vehicle)

  • 이수근;이한호;정재한;김동명;이재영
    • 한국수소및신에너지학회논문집
    • /
    • 제5권2호
    • /
    • pp.81-90
    • /
    • 1994
  • The hydrogen fuel tanks having hydrogen storing capacity of about 300g and 1200g are manufactured using $MmNi_{4.7}Al_{0.25}V_{0.05}Fe_{0.001}$ alloy. They are composed of several unit reactor made of Cu-tube(outer diameter = 50.1mm, thickness = 2mm). In order to increase the heat and mass transfer property of the hydride bed, Al-plates are inserted perpendicular to axial direction at intervals of 5mm and three arteries of diameter 8mm are installed symmetrically in each unit reactor. Hydrogen absorption is proceeded about 80% within 30 minute and is completed within 60 minute at the conditions of charging hydrogen pressure of 25atm and temperature of $22^{\circ}C$. On desorbing hydrogen at a constant rate of 30 slm at $20^{\circ}C$, discharging hydrogen pressure is sustained at 3~5atm for 120 minutes. The discharging pressure is increased upto 5~8atm as the increase of the reactor temperature to $30^{\circ}C$. From the experimental results and the brief discussions about the hydrogen absorption and disorption behaviors of the hydrogen storage tank, it is suggested that the behaviors of hydrogen charging and discharging could be controlled by adjusting the operating parameters and the reactor design parameters.

  • PDF

$AB_5$계 수소저장합금의 Zr, Ti 및 V 첨가에 따른 전기화학적특성 (Electrochemical properties of $AB_5$-type Hydrogen alloys upon addition of Zr, Ti and V)

  • 김대환;조성욱;정소이;박충년;최전
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.31-38
    • /
    • 2006
  • There are two types of metal hydride electrodes as a negative electrode in a Ni-MH battery, $AB_2$ Zr-based Laves phases and $AB_5$ LM(La-rich mischmetal)-based alloys. The $AB_5$ alloy electrodes have characteristic properties such as a large discharge capacity per volume, easiness in activation, long cycle life and a low cost of alloy. However they have a relatively small discharge capacity per weight. The $AB_2$alloy electrodes have a much higher discharge capacity per weight than $AB_5$ alloy electrodes, however they have some disadvantages of poor activation behavior and cycle life. Therefore, in order to improve the discharge capacity of the $AB_5$ alloy electrode the Zr, Ti and V which are the alloying elements of the $AB_2$ alloys were added to the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy which was chosen as a $AB_5$ alloy with a high capacity. The addition of Zr, Ti and V to $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}$ alloy improved the activation to be completed in two cycles. The discharge capacities of Zr 0.02, Ti 0.02 and V 0.1 alloys in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) were respectively 346, 348 and 366 mAh/g alloy. The alloy electrodes, Zr 0.02, Ti 0.05 and V 0.1 in $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V), have shown good cycle property after 200 cycles. The rate capability of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloy electrodes were very good until 0.6 C rate and the alloys, Zr 0.02, Ti 0.05 and V 0.1, have shown the best result as 92 % at 2.4 C rate. The charge retention property of the $LaNi_{3.6}Ai_{0.4}Co_{0.7}Mn_{0.3}M_y$ (M = Zr, Ti, V) alloys was not good and the alloys with M content from 0.02 to 0.05 showed better charge retention properties.