• Title/Summary/Keyword: Ni-metal hydride

Search Result 66, Processing Time 0.029 seconds

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Numerical analysis of the coupled heat and mass transfer phenomena in a metal hydride hydrogen storage reactor(I) - Model development of analyzation for hydrogen absorption reaction using the $LaNi_5$ bed (금속수소화물 수소저장 용기 내부의 열 및 물질전달 현상에 대한 수치적 연구(I) - $LaNi_5$ 베드를 이용한 수소 흡장반응 해석 모델 개발)

  • Nam, Jinmoo;Ju, Hyunchul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.225.1-225.1
    • /
    • 2010
  • Within recent years attention has been focused on the method of hydrogen storage using metal hydride reactor due to its high energy density, durability, safety and low operating pressure. In this paper, a numerical study is carried out to investigate the coupled heat and mass transfer process for absorption in a cylindrical metal hydride hydrogen storage reactor using a newly developed model. The simulation results demonstrate the evolution of temperature, equilibrium pressure, H/M atomic ratio and velocity distribution as time goes by. Initially, hydrogen is absorbed earlier from near the wall which sets the cooling boundary condition owing to that absorption process is exothermic reaction. Temperature increases rapidly in entire region at the beginning stage due to the initial low temperature and enough metal surface for hydrogen absorption. As time goes by, temperature decreases slowly from the wall region due to the better heat removal. Equilibrium pressure distribution appears similarly with temperature distribution for reasons of the function of temperature. This work provides a detailed insight into the mechanism and corresponding physicochemical phenomena in the reactor during the hydrogen absorption process.

  • PDF

Heat Transfer Characteristics and Hydrogen Storage Kinetics of Metal Hydride-Expended Graphite Composite (금속수소화물-팽창흑연 복합체의 열전달 특성 및 수소 저장 특성)

  • LEE, PYOUNGJONG;KIM, JONGWON;BAE, KIKWANG;JEONG, SEONGUK;KANG, KYOUNGSOO;JUNG, KWANGJIN;PARK, CHUSIK;KIM, YOUNGHO
    • Journal of Hydrogen and New Energy
    • /
    • v.31 no.6
    • /
    • pp.564-570
    • /
    • 2020
  • Metal hydride is suitable for safe storage of hydrogen. The hydrogen storage kinetics of the metal hydride are highly dependent on its heat transfer characteristics. This study presents a metal hydride-expended graphite composite with improved thermal conductivity and its hydrogen storage kinetics. To improve the heat transfer characteristics, a metal hydride was mixed and compacted with a high thermal conductivity additive. As the hydrogen storage material, AB5 type metal hydride La0.9Ce0.1Ni5 was used. As an additive, flakes-type expended graphite was used. With improved heat transfer characteristics, the metal hydride-expended graphite composite stores hydrogen four times faster than metal hydride powder.

Optimum Operating Conditions of Metal Hydride Chemical Heat Pump (Metal Hydride Chemical Heat Pump의 최적 작동조건에 관한 연구)

  • Kwon, Kee-Won;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.1 no.1
    • /
    • pp.24-30
    • /
    • 1989
  • Prototype metal hydride chemical heat pump was constructed using $LaNi_{4.7}Al_{0.3}$ for high temperature hydride and $MmNi_{4.15}Fe_{0.65}Al_{0.2}$ for low temperature hydride, and the effects of operating conditions on the performace of heat pump were investigaed to find out the optimum operating condition. Operating variables considered in this work were cycling time, temperature of hot air blown to the high temperature reactor, the amount of hydrogen gas with which the system was charged initially, and the flow rate of air at both reactors. Power of heat pump increases monotonically as $T_h$ increases, and shows maxima at 4.8H/M and 15-25 min in $H_2$ charged and cycling time respectively. Power of heat pump increases as air flow rate increases at low flow rate, but saturates to some value confined by heat flow rate through the hydride bed, These all phenomena can be explained by the modified power equation.

  • PDF

Railway System Standby Power Nickel Metal Hydride Battery (철도시스템비상전원용 니켈수소(NiMH)전지)

  • Kim, Sung-Yong;Park, Dong-Pil
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.873-877
    • /
    • 2009
  • In order to use railway system standby power, produced 160Ah NiMH battery that would be able to substitute the lead acid battery or NiCd battery form which contain the toxic material in environment, using parallel connected 80Ah NiMH battery. And in order to develop proper electrode in the 160Ah NiMH battery, tested high rate discharge performance of the ternary electrolyte. 160Ah NiMH battery evaluated the various test in order to use railway system standby power.

Numerical Study of Hydrogen Desorption in a Metal Hydride Hydrogen Storage Vessel (금속수소화물 수소 저장 용기 내부의 수소방출에 대한 수치해석적 연구)

  • Kang, Kyung-Mun;Nam, Jin-Moo;Yoo, Ha-Neul;Ju, Hyun-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.3
    • /
    • pp.363-371
    • /
    • 2011
  • In this paper, a three-dimensional hydrogen desorption model is developed to precisely study the hydrogen desorption kinetics and resultant heat and mass transport phenomena in metal hydride hydrogen storage vessels. The metal hydride hydrogen desorption model, i.e. governed by the conservation of mass, momentum, and thermal energy is first experimentally validated against the temperature evolution data measured on a cylindrical $LaNi_5$ metal hydride vessel. The equilibrium pressure used for hydrogen desorption simulations is derived as a function of H/M atomic ratio and temperature based on the experimental data in the literature. The numerical simulation results agree well with experimental data and the 3D desorption model successfully captures key experimental trends during hydrogen desorption process. Both the simulation and experiment display an initial sharp decrease in the temperature mainly caused by relatively slow heat supply rate from the vessel external wall. On the other hand, the effect of heat supply becomes influential at the latter stages, leading to smooth increase in the vessel temperature in both simulation and experiment. This numerical study provides the fundamental understanding of detailed heat and mass transfer phenomena during hydrogen desorption process and further indicates that efficient design of storage vessel and heating system is critical to achieve fast hydrogen discharging performance.

A Study on the Electrochemical and Thermodynamic Properties of Hydrogen Absorbing Alloys (수소저장합금의 전기화학 및 열역학적 특성에 관한 연구)

  • Park, Chan-Kyo;Cho, Tae-Hwan
    • Journal of Hydrogen and New Energy
    • /
    • v.5 no.2
    • /
    • pp.65-71
    • /
    • 1994
  • Electrochemical and thermodynamic properties of $MmNi_5$ and the related alloys for nickel-metal hydride battery(Ni-MH) were studied in terms of the equilibrium hydrogen pressure. $MmNi_5$ alloy with high equilibrium hydrogen pressure(10~20atm at room temperature), which is usually difficult to charge, was substituted for Al in part. Partial substitution of Al made not only the equilibrium pressure to be reduced remarkably, but also the enthalpy change depending on the formation of metal hydride to be agreed to the value in gas phase reaction and electrochemical reaction. Besides the composition of Al which can be given the maximum discharge capacity was turned out to be between the 0.5~1.0 atoms of Al.

  • PDF

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Transition Metal Nanoparticles-Carbon Nitride Nanotube Hybrids: Direct Hydrogen Generation Catalyst of Chemical Hydride Aqueous Solution (전이금속-카본나이트라이드 나노튜브 혼성체: 화학적 수소화물 수용액의 수소발생 촉매)

  • Shin, Weon-ho;Jung, Hyung-mo;Kang, Jeung-ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.781-781
    • /
    • 2009
  • We demonstrate that trasition metal catalyst nanoparticle (NP) attached to carbon nitride nanotubes (CNNTs) show selective catalytic activities on hydrogen generation from the water solution including chemical hydride negative ions. The natural bonding orbitals (NBO) obtained from the first-principle calculations shows that the catalysts attached on CNNTs are quite differently polarized when they play for hydrogen generation from chemical hydride ions and hydrogen of water. For Co and Ni nanoparticles attached on CNNTs, their charges are more positively polarized when they interact with $BH_4^-Na^+$ and $H_2O$ while Pt atoms are less positively charged. In this matter, the increased positive charges on catlyst nanoparticles are proven to be more efficient in attracting hydride negative ions, thus improving hydrogen generate rates. Consequently, this result implies that these different charge polarization leads to selective catalytic activities of NPs-CNNTs. In the hydrogen generation experiments, Co-CNNTs shows the highest hydrogen generation rate when the similar amounts of catalyst nanoparticles (Co, Ni, and Pt) are dispersed on the sidewalls of CNNTs.

  • PDF