• Title/Summary/Keyword: Ni-foil

Search Result 61, Processing Time 0.029 seconds

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

Shear Strength and Aging Characteristics in Solder Bumps for High Reliability Optical Module (고신뢰성 광모듈을 위한 솔더 범프의 전단강도와 시효 특성)

  • 유정희
    • Journal of Welding and Joining
    • /
    • v.21 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • The change of microstructures in the base metal during transient liquid phase bonding process of directionally Ni base superalloy, GID-111 was investigated. Bonds were fabricated using a series of holding times(0~7.2ks) at three different temperatures. The flip chip bonding utilizing self-aligning characteristic of solder becomes mandatory to meet tolerances for the optical device. In this paper, a parametric study of aging condition and pad size of samples was evaluated. A TiW/Cu/electroplated Cu UBM structure was selected and the samples were aging treated to analyze the effect of intermetallic compounds with the time variations. An FIB technique was applied to the preparation of samples for TEM observations. An FIB technique is very useful to prepare TEM thin foil specimens from the solder joint interface. After aging treatment, the tendency to decrease in shear strength was measured and the structure of the solder and the UBM was observed by using SEM, TEM and EDS. As a result, the shear strength was decreased of about 21% in the 100${\mu}{\textrm}{m}$ sample at 17$0^{\circ}C$ aging compared with the maximum shear strength of the sample with the same pad size. In the case of the 12$0^{\circ}C$ aging treatment, 18% of decrease in shear strength was measured at the 100${\mu}{\textrm}{m}$ pad size sample. An intermetallic compound of Cu6Sn5 and Cu3Sn were also observed through the TEM measurement by using.

Preparation and Characterization of Mesoporous Ni Film Made by Electroplating Method (전착법을 이용한 메조포러스 니켈 필름의 제조와 특성 분석)

  • Lee, Ji-Hoon;Baik, Young-Nam;Kim, Young-Seok;Shin, Seung-Han
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.16-22
    • /
    • 2007
  • Recently, mesoporous metallic materials are becoming more and more important in various applications like catalysts, electrochemical detectors, batteries, and fuel cells because of their high surface area. Among the various methods for manufacturing mesoporous structure, surfactant templating method followed by electroplating has been tried in this study. A mesoporous metallic film was prepared by electrodeposition from electroplating solution mixed with surfactant template. Nonionic type lyotropic liquid crystalline surfactant, Brij56, and nickel acetate based solution were selected as a template material and electroplating solution, respectively. To determine the content of surfactant forming a hexagonal column structure, the phase diagram of electroplating solution and surfactant mixture has been exploited by polarized optical microscopy equipped with heating and cooling stage. Nickel films were electroplated on Cu foil by stepwise potential input method to alleviate the concentration polarization occurred during the electroplating process. TEM and XRD analyses were performed to characterize the size and shape of mesostructures in manufactured nickel films, and electrochemical characterization was also carried out using cyclic voltammetry.

Effects of Residual PMMA on Graphene Field-Effect Transistor

  • Jung, J.H.;Kim, D.J.;Sohn, I.Y.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.561-561
    • /
    • 2012
  • Graphene, two dimensional single layer of carbon atoms, has tremendous attention due to its superior property such as fast electron mobility, high thermal conductivity and optical transparency, and also found many applications such as field-effect transistors (FET), energy storage and conversion, optoelectronic device, electromechanical resonators and chemical sensors. Several techniques have been developed to form the graphene. Especially chemical vapor deposition (CVD) is a promising process for the large area graphene. For the electrically isolated devices, the graphene should be transfer to insulated substrate from Cu or Ni. However, transferred graphene has serious drawback due to remaining polymeric residue during transfer process which induces the poor device characteristics by impurity scattering and it interrupts the surface functionalization for the sensor application. In this study, we demonstrate the characteristics of solution-gated FET depending on the removal of polymeric residues. The solution-gated FET is operated by the modulation of the channel conductance by applying a gate potential from a reference electrode via the electrolyte, and it can be used as a chemical sensor. The removal process was achieved by several solvents during the transfer of CVD graphene from a copper foil to a substrate and additional annealing process with H2/Ar environments was carried out. We compare the properties of graphene by Raman spectroscopy, atomic force microscopy(AFM), and X-ray Photoelectron Spectroscopy (XPS) measurements. Effects of residual polymeric materials on the device performance of graphene FET will be discussed in detail.

  • PDF

Performance of a hydrofoil operating close to a free surface over a range of angles of attack

  • Ni, Zao;Dhanak, Manhar;Su, Tsung-chow
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2021
  • Performance of a NACA 634-021 hydrofoil in motion under and in close proximity of a free surface for a large range of angles of attack is studied. Lift and drag coefficients of the hydrofoil at different submergence depths are investigated both numerically and experimentally, for 0° ≤ AoA ≤ 30° at a Reynolds number of 105. The results of the numerical study are in good agreement with the experimental results. The agreement confirms the new finding that for a submerged hydrofoil operating at high angles of attack close to a free surface, the interaction between the hydrofoil-motion induced waves on the free surface and the hydrofoil results in mitigation of the flow separation characteristics on the suction side of the foil and delay in stall, and improvement in hydrofoil performance. In comparing with a baseline case, results suggest a 55% increase in maximum lift coefficient and 90% average improvement in performance for, based on the lift-to-drag ratio, but it is also observed significant decrease of lift-to-drag ratio at lower angles of attack. Flow details obtained from combined finite volume and volume of fluid numerical methods provide insight into the underlying enhancement mechanism, involving interaction between the hydrofoil and the free surface.

Structural Behavior of Mixed $LiMn_2O_4-LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ Cathode in Li-ion Cells during Electrochemical Cycling

  • Yun, Won-Seop;Lee, Sang-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.5-5
    • /
    • 2011
  • The research and development of hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV) and electric vehicle (EV) are intensified due to the energy crisis and environmental concerns. In order to meet the challenging requirements of powering HEV, PHEV and EV, the current lithium battery technology needs to be significantly improved in terms of the cost, safety, power and energy density, as well as the calendar and cycle life. One new technology being developed is the utilization of composite cathode by mixing two different types of insertion compounds [e.g., spinel $LiMn_2O_4$ and layered $LiMO_2$ (M=Ni, Co, and Mn)]. Recently, some studies on mixing two different types of cathode materials to make a composite cathode have been reported, which were aimed at reducing cost and improving self-discharge. Numata et al. reported that when stored in a sealed can together with electrolyte at $80^{\circ}C$ for 10 days, the concentrations of both HF and $Mn^{2+}$ were lower in the can containing $LiMn_2O_4$ blended with $LiNi_{0.8}Co_{0.2}O_2$ than that containing $LiMn_2O_4$ only. That reports clearly showed that this blending technique can prevent the decline in capacity caused by cycling or storage at elevated temperatures. However, not much work has been reported on the charge-discharge characteristics and related structural phase transitions for these composite cathodes. In this presentation, we will report our in situ x-ray diffraction studies on this mixed composite cathode material during charge-discharge cycling. The mixed cathodes were incorporated into in situ XRD cells with a Li foil anode, a Celgard separator, and a 1M $LiPF_6$ electrolyte in a 1 : 1 EC : DMC solvent (LP 30 from EM Industries, Inc.). For in situ XRD cell, Mylar windows were used as has been described in detail elsewhere. All of these in situ XRD spectra were collected on beam line X18A at National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory using two different detectors. One is a conventional scintillation detector with data collection at 0.02 degree in two theta angle for each step. The other is a wide angle position sensitive detector (PSD). The wavelengths used were 1.1950 ${\AA}$ for the scintillation detector and 0.9999 A for the PSD. The newly installed PSD at beam line X18A of NSLS can collect XRD patterns as short as a few minutes covering $90^{\circ}$ of two theta angles simultaneously with good signal to noise ratio. It significantly reduced the data collection time for each scan, giving us a great advantage in studying the phase transition in real time. The two theta angles of all the XRD spectra presented in this paper have been recalculated and converted to corresponding angles for ${\lambda}=1.54\;{\AA}$, which is the wavelength of conventional x-ray tube source with Cu-$k{\alpha}$ radiation, for easy comparison with data in other literatures. The structural changes of the composite cathode made by mixing spinel $LiMn_2O_4$ and layered $Li-Ni_{1/3}Co_{1/3}Mn_{1/3}O_2$ in 1 : 1 wt% in both Li-half and Li-ion cells during charge/discharge are studied by in situ XRD. During the first charge up to ~5.2 V vs. $Li/Li^+$, the in situ XRD spectra for the composite cathode in the Li-half cell track the structural changes of each component. At the early stage of charge, the lithium extraction takes place in the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component only. When the cell voltage reaches at ~4.0 V vs. $Li/Li^+$, lithium extraction from the spinel $LiMn_2O_4$ component starts and becomes the major contributor for the cell capacity due to the higher rate capability of $LiMn_2O_4$. When the voltage passed 4.3 V, the major structural changes are from the $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, while the $LiMn_2O_4$ component is almost unchanged. In the Li-ion cell using a MCMB anode and a composite cathode cycled between 2.5 V and 4.2 V, the structural changes are dominated by the spinel $LiMn_2O_4$ component, with much less changes in the layered $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ component, comparing with the Li-half cell results. These results give us valuable information about the structural changes relating to the contributions of each individual component to the cell capacity at certain charge/discharge state, which are helpful in designing and optimizing the composite cathode using spinel- and layered-type materials for Li-ion battery research. More detailed discussion will be presented at the meeting.

  • PDF

Wireless Telemetry of an Oscillating Flow using Mesoscale Flexible Cantilever Sensor (메소스케일 유연 외팔보 센서를 이용한 진동유동의 무선 계측)

  • Park, Byung Kyu;Lee, Joon Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.495-501
    • /
    • 2013
  • This paper describes a flexible wireless telemetering system using a mesoscale cantilever sensor, which is microfabricated with a patterned thin Ni-Cu foil on a resin substrate. The dynamic validation of the sensor has been conducted in a flow. The wireless telemetry is used to obtain data regarding the oscillating flows. It is shown that the sensor is nearly independent of the environmental temperature and is suitable for application to primary healthcare and diagnostic devices. It can be easily integrated with other modules for measuring physiological parameters, e.g., blood pressure, oxygen saturation, and heart rate, to increase the convenience and reliability of diagnosis. The precision and reliability of the sensor are also dependent on the design of the analog front-end and noise reduction techniques. It is shown that the present system's minimum interval between packet transmissions is ~16 ms.

Study on the Compositions of Photosensitive Resistor Paste Using Epoxy Acrylate Oligomers and Conductive Carbonblack (에폭시 아크릴레이트 올리고머와 전도성 카본블랙을 이용한 감광성 저항 페이스트 조성 연구)

  • Park, Seong-Dae;Kang, Nam-Kee;Lim, Jin-Kyu;Kim, Dong-Kook
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.421-421
    • /
    • 2008
  • Generally, the polymer thick-film resistors for embedded organic or hybrid substrate are patterned by screen printing so that the accuracy of resistor pattern is not good and the tolerance of resistance is too high(${\pm}$20~30%). To reform these demerits, a method using Fodel$^{(R)}$ technology, which is the patterning method using a photosensitive resin to be developable by aqueous alkali-solution as a base polymer for thick-film pastes, was recently incorporated for the patterning of thermosetting thick-film resistor paste. Alkali-solution developable photosensitive resin system has a merit that the precise patterns can be obtained by UV exposure and aqueous development, so the essential point is to get the composition similar to PSR(photo solder resist) used for PCB process. In present research, we made the photopatternable resistor pastes using 8 kinds of epoxy acrylates and a conductive carbonblack (CDX-7055 Ultra), evaluated their developing performance, and then measured the resistance after final curing. To become developable by alkali-solution, epoxy acrylate oligomers with carboxyl group were prepared. Test coupons were fabricated by patterning copper foil on FR-4 CCL board, plating Ni/Au on the patterned copper electrode, applying the resistor paste on the board, exposing the applied paste to UV through Cr mask with resistor patterns, developing the exposed paste with aqueous alkali-solution (1wt% $Na_2CO_3$), drying the patterned paste at $80^{\circ}C$ oven, and then curing it at $200^{\circ}C$ during 1 hour. As a result, some test compositions couldn't be developed according to the kind of oligomer and, in the developed compositions, the measured resistance showed different results depending on the paste compositions though they had the same amount of carbonblack.

  • PDF

Effects of Initial Nucleation Condition at the Start Block on the Grain Size and Growth Direction in Directionally Solidified CM247LC Superalloy (CM247LC 초내열합금에서 일방향응고 스타트 블록의 초기 핵생성 조건에 따른 결정립 성장)

  • Yoon, Hye-Young;Lee, Je-Hyun;Jung, Hyeong-Min;Seo, Seong-Moon;Jo, Chang-Young;Gwon, Seok-Hwan;Chang, Byeong-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.1
    • /
    • pp.58-63
    • /
    • 2011
  • The grain size and growth direction of a directionally solidified turbine blade were evaluated by the initial nucleation condition at the start block of directional solidification. The initial nucleation condition was controlled by inserting a Ni foil on the directional solidification plate of the directional solidification furnace. Fine grains with good orientation were obtained in the faster cooling condition at the start block. The nucleus number was compared with the cooling rate of the start block by electron back scattered diffraction (EBSD). DSC (differential scanning calorimeter) analysis was performed to compare the melting point and undercooling for nucleation of the coarse nuclei and fine nuclei of the start block. The faster cooling condition at the start block showed more undercooling for nucleation and smaller size of nuclei which resulted in a fine grain with good orientation in the directional turbine blade.

The Effects of Levelers on Electroplating of Thin Copper Foil for FCCL (전기도금법을 이용한 FCCL용 구리박막 제조시 레벨러의 영향 연구)

  • Kang, In-Seok;Koo, Yeon-Soo;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.2
    • /
    • pp.67-72
    • /
    • 2012
  • In recent days, the wire width of IC is narrowed and the degree of integration of IC is increased to obtain the higher capacity of the devices in electronic industry. And then the surface quality of FCCL(Flexible Copper Clad Laminate) became increasingly important. Surface defects on FCCL are bump, scratch, dent and so on. In particular, bumps cause low reliability of the products. Even though there are bumps on the surface, if leveling characteristic of plating solution is good, it does not develop significant bump. In this study, the leveling characteristics of additives are investigated. The objective of study is to improve the leveling characteristic and reduce the surface step through additives and plating conditions. The additives in the electrodeposition bath are critical to obtain flat surface and free of defects. In order to form flat copper surface, accelerator, suppressor and leveler are added to the stock solution. The reason for the addition of leveler is planarization surface and inhibition of the formation of micro-bump. Levelers (SO(Safranin O), MV(Methylene Violet), AB(Alcian Blue), JGB(Janus Green B), DB(Diazine Black) and PVP(Polyvinyl Pyrrolidone) are used in copper plating solution to enhance the morphology of electroplated copper. In this study, the nucleation and growth behavior of copper with variation of additives are studied. The leveling characteristics are analyzed on artificially fabricated Ni bumps.