• 제목/요약/키워드: Ni-coating

검색결과 562건 처리시간 0.023초

용융탄산염에 대한 스테인레스강의 내식성 향상을 위한 NiAl 피복에 관한 연구 (Study on the NiAl Coating for Corrosion Resistance of Stainless Steel in Molten Carbonate Salt)

  • 황응림;강성군
    • 한국재료학회지
    • /
    • 제7권1호
    • /
    • pp.76-80
    • /
    • 1997
  • 용융탄산염 연료전지 분리판의 wet-seal부의 내식성 향상을 위한 NiAl 피복공정이 조사되었다. AlSl 316 스테인레스강위에 Ni과 Al를 순차적으로 피복한 후, $800^{\circ}C$에서 3시간 열처리하여 NiAl상이 형성됨을 확인할 수 있었다. NiAl상이 피복된 스테인레스강은 $650^{\circ}C$, 용융탄산염($62^{m}/_{o}Li_2CO_3-38^{m}/_{o}/K_{2}CO_{3}$)내에서 침지시험을 통해 내식성이 평가되었는데, AISI 316 스테인레스강에 비해 우수한 내식성을 보였다. 이는 표면에 치밀하게 형성된 AI 산화물층에 의한 것으로 판단되었다.

  • PDF

NiZn Ferrite Coating for Electrical Insulation of MnZn Ferrite Cores

  • Kitamoto, Y.;Yajima, H.;Nakayama, Y.;Abe, M.
    • 한국세라믹학회지
    • /
    • 제38권6호
    • /
    • pp.506-508
    • /
    • 2001
  • The ferrite plating with applying power ultrasound waves of 19.5 kHz and 600W enabled us to encapsulate entirely MnZn ferrite cores for transformers with Ni$\sub$x/Zn$\sub$y/Fe$\sub$3-x-y/O$_4$coating. Supplying a NH$_4$OH solution during the plating broke the limit of the solubility of Ni ions to ferrite-plated films. The electrical resistivity of the NiZn ferrite coating increased with increasing the Ni and Zn content, reaching 2.3${\times}$10$\^$5/Ωcm at the composition of Ni$\sub$0.24/Zn$\sub$0.30/Fe$\sub$2.46/O$_4$. The saturation magnetization was 540 emu/㎤. As a result, the MnZn ferrite cores were successfully encapsulated with the NiZn ferrite coatings for an insulation layer.

  • PDF

EFFECT OF ADDED Si ON DENSIFICATION OF Ni-AI INTERMETALLIC COATING ON SPHEROIDAL GRAPHITE CAST IRON SUBSTRATES

  • Kim, Tetsuro ata;Keisuke Uenishi;Akira Ikenaga;Kojiro F. Kobayashi
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.726-731
    • /
    • 2002
  • Reaction synthesis is a process to form ceramics, intermetallics and their composites from elemental powder mixture. Application of this process to a surface modification techniques has a possibilities to enable the process at a lower temperature or for a shorter time, although synthesized materials are likely to include voids and unreacted elements. This paper intend to examine the effect of Si addition to the mixture of Al and Ni on the densification of synthesized Ni-Al intermetallic compounds and to evaluate the surface properties of obtained coatings. By the Si addition, exothermic reaction temperature to form Ni-Al intermetallic was lowered to be below the melting point of Al. Si soluted $Al_3$Ni$_2$, $Al_3$Ni and $Al_{6}$Ni$_3$Si were mainly formed in the coating layer when powder mixture was heated to 973K for 300s. Besides, densification was enhanced by increasing hot press pressure, Si additions and heating rate. When the composition of eutectic Al-Si reaches 78%, void ratio of sintered compact reduced to 0.4%. It is caused by higher flowability of Al-Si liquid phase generated and its infiltration into the void. Since the hardness of NiAl(Si) compound (about 600HV) formed in the coating layer is higher than that of Ni-Al compound (about 400HV), coating layer with high density and superior wear property is obtained by hot press using reaction synthesis from Al-Ni-Si powder mixture.

  • PDF

LPPS용사법과 HVOF 용사법으로 제조된 CoNiCrAlY 코팅의 고온물성에 관한 연구 (A study on the high temperature properties of CoNiCrAlY coating fabricated by HVOF and LPPS process)

  • 강현욱;권현옥;송요승
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.161-168
    • /
    • 2001
  • A Thermal Barrier Coating (TBC) can play an important role in protecting parts from harmful environments at high temperatures such as oxidation, corrosion, and wear in order to improve the efficiency of aircraft engines by lowering the surface temperature of the turbine blade. The TBC can increase the life span of the product and improve the operating properties. Therefore, in this study the mechanical and thermal properties of the TBC such as oxidation, fatigue and shock at high temperatures were evaluated. A samples of a bond coat (CoNiCrAlY) produced by the High Velocity Oxygen Fuel (HVOF) and Low Pressure Plasma Spray (LPPS) method were used. The thickness of the HVOF coating layer was approximately $450\mu\textrm{m}$ to 500$\mu\textrm{m}$ and the hardness number of the coating layer was between 350Hv and 400Hv. The thickness of the LPPS coating was about 350$\mu\textrm{m}$ to 400$\mu\textrm{m}$ and the hardness number of the coating was about 370Hv to 420Hv. The X-ray diffraction analysis showed that CoNiCrAlY coating layer of the HVOF and LPPS was composed of the $\beta$and ${\gamma}$phase. After the high temperature oxidation test, the oxide scale with about l0$\mu\textrm{m}$ to 20$\mu\textrm{m}$ thickness appeared at the coating surface on the Al-depleted zone was observed under the oxide scale layer.

  • PDF

진공 열 플라즈마 용사공정을 통한 NiTiZrSiSn 벌크 비정질 코팅 형성 (Vacuum Plasma Sprayed NiTiZrSiSn Coating)

  • 윤상훈;김준섭;김수기;이창희
    • Journal of Welding and Joining
    • /
    • 제25권4호
    • /
    • pp.42-48
    • /
    • 2007
  • An inert gas atomized NiTiZrSiSn bulk metallic glass feedstock was sprayed onto the copper plate using vacuum plasma spraying process. In order to change the in-flight particle energy, that is, thermal energy, the hydrogen gas flow rate in plasma gas mixture was increased at the constant flow rate of argon gas. Coating and single pass spraying bead were produced with the least feeding rate. Regardless of the plasma gas composition, fully melted through unmelted particle could be observed on the overlay coating. However, the frequency of the unmelted particle number density was increased with the decrease of the hydrogen gas flow rate. The amorphous phase fraction within coating was also affected by the number density of the unmelted particle.

최적 고속화염 용사 코팅 공정기술로 제조된 WC-CrC-Ni 코팅의 마모 특성 (Wear Property of HOVF WC-CrC-Ni Coating Prepared by Optimal Coating Process)

  • 주윤곤;윤재홍;이재현
    • 한국재료학회지
    • /
    • 제27권2호
    • /
    • pp.119-126
    • /
    • 2017
  • WC-CrC-Ni coatings were prepared by nine processes of the Taguchi program with three levels for the four spray parameters: spray distance, flow rates of hydrogen and oxygen, and powder feed rate. The optimal coating process (OCP) was oxygen flow rate of 38 FMR, hydrogen flow rate of 53 FMR, powder feed rate of 25 g/min, and spray distance of 7 inches. Hardness of 1150 Hv and porosity of 1.2 %, were obtained by OCP; these are better results compared with the highest 1033 Hv and the lowest 1.5 % porosity obtained by nine processes of the Taguchi program. Friction coefficient of the WC-CrC-Ni coating decreased from $0.36{\pm}0.07$ at $25^{\circ}C$ to $0.23{\pm}0.07$ at $450^{\circ}C$. These values were smaller than those of the EHC (electrolytic hard chrome) plating at both temperatures due to lubrication from the oxide debris. The wear trace and wear depth of the coating are smaller than those of the EHC at both temperatures. Pitting was not found in the WC-CrC-Ni coating sample, while it did appear in the EHC sample.

Uniform Coating of Organic-Capped Ba-Ti-O Nanolayers on Spherical Ni Particles

  • Lee, Yong-Kyun;Choi, Jae-Young;Yoon, Seon-Mi;Lee, Jong-Heun
    • 한국재료학회지
    • /
    • 제17권2호
    • /
    • pp.86-90
    • /
    • 2007
  • The organic-capped Ba-Ti-O nanolayers were coated uniformly on spherical Ni particles for multilayer ceramic capacitor (MLCC) applications via the formation of Ti-hydroxide nano-coating layers and their subsequent reaction with Ba-stearate at $180^{\circ}C$. The capping of organic shell on oxide coating layer changed the hydrophilic surface structure into hydrophobic one, which significantly improved the dispersion behavior in hydrophobic solvents such as terpineol and butanol. In addition, the uniform coating of Ba-Ti-O layer was advantageous to prevent Ni oxidation. This method provides a useful chemical route to fabricate organic-soluble Ba-Ti-O coated Ni particles for a highly integrated passive component.

Ni-25at.%Al 금속간화합물의 연소합성반응에 미치는 사전 Annealing 처리의 영향 (Effects of Pre-Annealing Treatment on the Combustion Synthesis of Ni3Al Intermetallics Coating)

  • 이한영;모남규
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.62-70
    • /
    • 2021
  • The problem with intermetallics coating using the heat of molten casting is that the heat generated during combustion synthesis dissolves the coating and the substrate metal. This study investigates whether pre-annealing before synthesis can control the reaction heat, with the aim of Ni3Al coating on the casting surface. Therefore, the effects of the annealing temperature and time on the combustion synthesis behavior of the powder compact of Ni-25at%Al after annealing were investigated. As results, the reaction heat when synthesized decreased as the annealing temperature was high and the annealing time was longer. This was attributed to the fact that Al was diffused to Ni particles during low temperature annealing and intermediate Ni-Al compounds were formed during high temperature annealing. After combustion synthesis, however, it was found that their microstructures were almost identical except for the amount of intermediate intermetallics. Furthermore, an annealing temperature above 450℃, at which intermediate compounds begin to form, is needed to prevent the dissolving problem during synthesizing. The intermetallics synthesized after annealing at higher temperature and prolonger annealing time showed a good wear resistance. This might be because much intermediate intermetallics of high hardness were remained in the microstructure.

내황화성 비정질 Nb-Ni-Al-Si 코팅층의 개발 (Development of Sulfidation Resistant Amorphous Nb-Ni-Al-Si Coating Layer)

  • 이동복;김종성;백종현
    • 한국표면공학회지
    • /
    • 제30권4호
    • /
    • pp.248-254
    • /
    • 1997
  • The sulfidation behavior of a sputter-deposited amorphous coating of 69.0%Nb-16.9Ni-11.9%Al-2.2%Si (at.%) has been investigated as a funtion of temperature.(973-1173K) in pure sulfur pressure of 0.01atm. The sulfidation kinetics of the casting obyed the parabolic rate low over the whole temperature ranges studied. The stlfidation rate increased with the temperature, as expected. The sulfide scale, the composition of which was $Al_2S_3,\;NbS_2,\;Ni_{3-x}S_2\;and\;FeCrS_4$, formed on the amorphous coating was primarily bilayered. Both the outer fastgrowing non-protective 4Al_2S_3$scale and the inner slowly-growing protective $NbS_2$,/TEX> scale and the inner slowly-growing protective $NbS_2$ scale had some Fe and Cr dissolution, which evidently came from the base substrate alloy of stainless steel type 304. Belows the coating, Kirkendall void formation was noticed. Nevertheless, a dramatic improvement of sulfidation resistance was achieved by sputter-depositing Nb-2 Ni-Al-Si layer on the stainless steel 304.

  • PDF

Correlations between In-flight Particles, Splats and Coating Microstructures of Ni20Cr Thermally Sprayed by Flame and Arc Spray Processes

  • Apichayakul, Pisit;Wirojanupatump, Sittichai;Jiansirisomboon, Sukanda
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.509-510
    • /
    • 2006
  • Correlations between in-flight particle, splat and coating microstructure of thermally sprayed Ni20Cr were investigated. Flame spray and arc spray systems were employed for spraying Ni20Cr powder and Ni20Cr wire, respectively. The results showed that the arc spray process produced a broader size distribution for both in-flight particles and splats compared to flame process. Flower-like splat morphology was obtained from the arc spray whereas a pancake-like splat was obtained by flame spray. Ni20Cr coating sprayed by arc process had a denser microstructure, lower porosity and better adhesion at the interface.

  • PDF