• Title/Summary/Keyword: Ni-coating

Search Result 562, Processing Time 0.031 seconds

A Study on the Erosion-Resistant Cermet Film Coating using the Detonation Spray Method (폭발용사에 의한 내에로젼성 서멧 피막 코팅에 관한 연구)

  • 김현근;남인철;오재환
    • Journal of Welding and Joining
    • /
    • v.19 no.1
    • /
    • pp.95-103
    • /
    • 2001
  • The properties of the detonation sprayed cermet coating are investigated through the mechanical, corrosion and erosion test. The test results are also compared with the properties of the substrate materials, STS 329J1, dual phase stainless steel and the plasma sprayed cermet coatings. The two kinds of carbide cermet power, WC+NiCr, Cr$_3$C$_2$+NiCr were used in this experiment. The experimental results showed that the anti-corrosive and anti-erosive properties of the detonation sprayed cermet coatings are superior to the plasma sprayed cermet coatings. The WC+NiCr cermet coating appears to be more effective than Cr$_3$C$_2$+NiCr cermet coating in abrasive erosion environment, whereas the Cr$_3$C$_2$+NiCr cermet coatings are more effective in cavitation erosion environment.

  • PDF

Study of Ni-coating on 316L Stainless Steel by Pulse Electroplating in Various Bath Conditions at Room Temperature (실온 펄스도금법을 이용한 STS 316L 표면의 Ni 도금 저가형욕 연구)

  • 정세진;조계현
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.1
    • /
    • pp.53-63
    • /
    • 2002
  • Ni coating was carried out by pulse plating at room temperature. So, experimental conditions for Ni-coating were based on Watt's bath, and new additives(propionic acid) were introduced in the Watt's bath electrolyte as $H_3$$BO_3$ alternatives. By adding propionic acid, coating layer demonstrated a good adhesion and uniformity without special pre-treatment of the 316L stainless steel at room temperature. With a decrease of amount of propionic acid and applied average current density, cathode current efficiency increased. Also, edge effect was decreased with decreasing a peak current and increasing a pulse frequency in the same bath condition. It was found that the optimum condition for Ni coating was a current density of 10~20mA/$\textrm{cm}^2$ at below 500 mA peak current in the $5m\ell/\ell$ propionic acid solution.

EFFECT OF GOLD ELECTRODEPOSIT OF PD-AG, NI-CR ALLOYS ON THE COLOR OF VENERRED RESIN (Pd-Ag 및 Ni-Cr 합금의 금 전착이 전장 레진의 색채에 미치는 영향)

  • Yang, Hong-So;Park, Yeong-Joon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.4
    • /
    • pp.645-661
    • /
    • 1995
  • As the mechanical property of composite resin improved, composite resin has been widely used esthetic dentistry. In the field of esthetic dentistry, the color of prosthetic material is very important. The purpose of this study was to evaluate the color difference of specimens, by the types of alloys and gold electrodeposit. Experimental groups were as follows : Group Prec : Au-Pt alloy with no gold coating and no resin veneer. Group Semi : Pd-Ag alloy with no gold coating and no resin veneer. Group BAse : Ni-Cr alloy with no gold coating and no resin veneer. Group Gsem : Pd-Ag alloy with no gold coating and no resin veneer. Group Gbas : Ni-Cr alloy with no gold coating and no resin veneer. Group PreR : Resin veneer on the Pd-Ag alloy without gold coating. Group SemR : Resin veneer on the Pd-Ag alloy without gold coating. Group GbsR : Resin veneer on the Ni-Cr alloy with gold coating Group BasR : Resin veneer on the Ni-Cr alloy without gold coating. In this study, colors of metal surfaces and veneered resins were evaluated by the CIE $L^{*}a^{*}b$ system. The results obtained were as follows : 1. different alloy types and gold coating make the $L^{*}a^{*}b$ system. 2. The ${\Delta}E^*$ab value between groups semi and Base was less than 1.5 and there was no $a^*$ and $b^*$ value difference between groups Gsem and Gbas 3. The values of $L^*$ and $a^*$ ain groups GsemR and GbasR were so similar that the ${\Delta}E^*$ab value was as small as 0.58. 4. In resin specimens with gold coated semiprecious or base alloys showed yellower and redder deviation than the resin specimens with precious alloy. 5. The ${\Delta}E^*$ab values between goups PreR-GsemR and groups PreR-GbasR were as small as 2.68 and 2.22 respectively.

  • PDF

Surface-modified Li[Ni0.8Co0.15Al0.05]O2 Cathode Fabricated using Polyvinylidene Fluoride as a Novel Coating

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.263-268
    • /
    • 2016
  • This study describes the effect of coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode surface with a homogeneous carbon layer produced by carbonization of polyvinylidene fluoride (PVDF) as a novel organic source. The phase integrity of the above cathode was not affected by the carbon coating, whereas its rate capability and cycling performance were enhanced. Similarly, the cathode thermal stability was also improved after coating, which additionally protected the cathode surface against the reactive electrolyte containing hydrofluoric acid (HF). The results show that coating the $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ cathode with carbon using the PVDF precursor is an effective approach to enhance its electrochemical properties.

Enhancement of Wear Resistance of CoCrNiAlTi Plasma Sprayed Coatings Using Titanium Carbide

  • De-Yong Li;Chul-Hee Lee
    • Tribology and Lubricants
    • /
    • v.39 no.1
    • /
    • pp.13-20
    • /
    • 2023
  • Large drill bits may face high hardness ore and high working pressure when working. To optimize the use effect of large drill bits and prolong the use time, it is necessary to add a layer of pressure-resistant, wear-resistant, and low-friction coating on the surface of the drill bit. In this study, CoCrNiAlTi high-entropy alloy coatings and CoCrNiAlTi (70 wt%)-TiC (30 wt%) composite coatings are successfully prepared on Q235 steel by plasma spraying. The CoCrNiAlTi (70 wt%)-TiC (30 wt%) coating consists of FCC solid solution and a small amount of TiC phase. The effect of TiC on the composition phase, microhardness, and elastic modulus of HEA coating is studied by X-ray diffractometer (XRD) and microhardness tester. The effect of TiC on the friction and wear properties of HEA coatings is investigated using a wear tester. By improving the process parameters, the metallurgical bonding between the coating and the substrate is well combined, and a coating without pores and cracks is obtained. The experimental results confirm that the microhardness, elastic modulus, and wear resistance of CoCrNiAlTi-TiC composite coating are better, and the friction coefficient is lower.

Effect of the Heat treatment and Boron on the Hot Corrosion Resistance of the Al Diffusion Coating (Al 확산피복층의 고온 내식성에 미치는 후열처리와 B첨가의 영향)

  • 김태원;윤재홍;이재현;김현수;변응선
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.1
    • /
    • pp.67-77
    • /
    • 1999
  • The Ni base superalloy Mar-M247 substrate was aluminized or aluminized after boronizing by the pack cementation under Ar atmosphere. The hot corrosion resistance and after-heat-treatment effect of aluminized specimens were studied by the cyclic hot corrosion test in $Na_2SO_4$-NaCl molten salt. XRD analysis showed that the $Ni_2Al_3$ phase was formed between the coated layer and substrate below 1273K but the NiAl phase above 1273K. The peak of the NiAl phase was developed after heat treatment. Corrosion test showed that corrosion resistance of the specimen with the NiAl phase was better than that with the $Ni_2Al_3$ phase. Corrosion resistance could be improved by heat treatment to form ductile NiAl phase, where cracks were not formed by thermal shock on coating layer. Moreover, it appeared that heat treatment played a role to improve corrosion resistance of Al diffusion coating above 1273K. The existence of boron in the Al diffusion coating layer obstructed outwared diffusion of Cr from the substrate, and it influenced on corrosion resistance of the coating layer by weakening adherence of the oxide scale.

  • PDF

High Temperature Oxidation and Sulfidation of Ni-15at.%W Coatings

  • Kim Chanwou;You Teayoul;Shapovalov Yuriy;Ko Jaehwang;Lee Dongbok;Lee Kyuhwan;Chang Doyon;Kim Dongsoo;Kwon Sikchol
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Ni-15at.% W coatings with film thicknesses of 20-40 ㎛ were electroplated on a steel substrate, and their oxidation behavior was investigated at 700 and 800℃ in air. For comparison, a pure Ni coating and a bulk Ni were also oxidized. The Ni-15at.%W coating displayed the worst oxidation resistance, due to the formation of less-protective NiO, Fe₂O₃, NiFe₂O₄ and NiWO₄. The corrosion behavior Ni-15at.%W coatings electroplated on a steel substrate was similarly investigated at 700 and 800℃ in the Ar-l%SO₂ atmosphere. For comparison, the uncoated steel substrate was also corrosion-tested in the Ar-l %SO₂ atmosphere. Severe scale spallation and the internal corrosion of the steel that occurred in the uncoated substrate were not observed in the coated specimen. However, it seemed that the Ni-15at.%W coating cannot be a potential candidate as a sulfidation-resistant coating, due to the formation of less-protective NiO, NiS, WO₃ and NiWO₄.

Microstructural and Wear Properties of WC-based and Cr3C2-based Cermet Coating Materials Manufactured with High Velocity Oxygen Fuel Process (고속 화염 용사 공정으로 제조된 WC계 및 Cr3C2계 Cermet 코팅 소재의 미세조직 및 마모 특성)

  • Kang, Yeon-Ji;Ham, Gi-Su;Kim, Hyung-Jun;Yoon, Sang-Hoon;Lee, Kee-Ahn
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.408-414
    • /
    • 2018
  • This study investigates the microstructure and wear properties of cermet (ceramic + metal) coating materials manufactured using high velocity oxygen fuel (HVOF) process. Three types of HVOF coating layers are formed by depositing WC-12Co, WC-20Cr-7Ni, and Cr3C2-20NiCr (wt.%) powders on S45C steel substrate. The porosities of the coating layers are $1{\pm}0.5%$ for all three specimens. Microstructural analysis confirms the formation of second carbide phases of $W_2C$, $Co_6W_6C$, and $Cr_7C_3$ owing to decarburizing of WC phases on WC-based coating layers. In the case of WC-12Co coating, which has a high ratio of $W_2C$ phase with high brittleness, the interface property between the carbide and the metal binder slightly decreases. In the $Cr_3C_2-20CrNi$ coating layer, decarburizing almost does not occur, but fine cavities exist between the splats. The wear loss occurs in the descending order of $Cr_3C_2-20NiCr$, WC-12Co, and WC-20Cr-7Ni, where WC-20Cr-7Ni achieves the highest wear resistance property. It can be inferred that the ratio of the carbide and the binding properties between carbide-binder and binder-binder in a cermet coating material manufactured with HVOF as the primary factors determine the wear properties of the cermet coating material.

Effect of Pt on the High Temperature Stability of NiCoCrAlY or NiAl Bond Coat in the Thermal Barrier Coating System (NiCoCrAlY 및 NiAl bond coat를 사용한 Thermal Barrier Coating의 고온안정성에 미치는 Pt의 영향)

  • Ku Seongmo;Kim Gil Moo
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.375-381
    • /
    • 2005
  • High temperature oxidation behavior of thermal barrier coating (TBC) system (IN738 substrate + NiCoCrAlY or NiAl bond coat with or without Pt + yttria stabilized zirconia) prepared by air plasma spray (APS) process has been studied in order to understand the effect of Pt addition to bond coat on the stability of TBC system. Specimens were oxidized in thermal cycling and isothermal oxidation test at $1100^{\circ}C$. The Pt addition in TBC system with NiCoCrAlY bond coat showed a longer life time compared to that without addition of Pt. Pt addition to TBC system is believed to help the formation of more stable thermally grown oxide, $Al_2O_3$, at the TBC/bond coat interface, leading to a longer lifetime of TBC system.

Characterization of the Morphology and Corrosion Resistance in Electroless Ni-P-TiO2 Composite Coating Prepared by TiO2 Contents (TiO2 함량에 따르는 무전해 Ni-P-TiO2 복합도금층 특성 연구)

  • Byoun, Young-Min;Kim, Ho-Young;lee, Jae-Woong;Hwang, Hwan-il
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.4
    • /
    • pp.187-193
    • /
    • 2019
  • Electroless Ni-P coatings are widely used in the chemical, mechanical, and electronic industries because of their excellent wear and abrasion resistance. In this study, the effect of $TiO_2$ particles of composite coating was investigated. To improve the corrosion resistance, electroless $Ni-P-TiO_2$composite coating was studied by varying the $TiO_2$ content. The morphology and phase structure of $Ni-P-TiO_2$ composite coatings were analyzed by scanning electron microscopy(SEM), X-ray diffractometry(XRD) and X-ray photoelectron spectroscopy(XPS). The result showed that $Ni-P-TiO_2$composite coating is composed of Ni, P, Ti and O. It exhibits an amorphous structure, high hardness and good corrosion resistance to the substrate. $Ni-P-TiO_2$ composite coatings have higher open circuit potential than that of the substrate, which obtained at $TiO_2$ content of 5.0 g/L optimal integrated properties.