• 제목/요약/키워드: Ni-W alloys

검색결과 63건 처리시간 0.023초

Ni-W 합금도금의 결정구조에 미치는 전류밀도의 영향 (Effect of Current Density on the Crystal Structure of Ni-W Alloys Prepared by Electrodeposition)

  • 김원백;이철경;이재천;서창열
    • 한국재료학회지
    • /
    • 제8권10호
    • /
    • pp.898-904
    • /
    • 1998
  • 10-50wt% 범위의 W을 함유하는 Ni-W 합금을 전기도금에 의해 제조하였다. 합금 중의 W 량은 전류밀도가 증가함에 따라 증가하였다. 전류밀도가 50mA/${cm}^2$이하인 경우 Ni-W합금은 미세한 결정립을 갖는 Ni의 고용체이었으며, 전류밀도가 50mA/${cm}^2$이상인 경우 비정질상으로 변화하였다. 이들의 결정질$\longrightarrow$비정질 천이는 W량이 40-46wt%인 구간에서 일어났으며 반각폭이 3배이상으로 증가하였다. 결정질 합금의 격자상수는 평형상태도 상의 W의 고용한계(약 30wt%)를 초과하는 40wt%까지 연속적으로 증가하는 것으로 나타나 Ni이 W을 과고용하고 있는 상태인 것으로 밝혀졌다. 비정질 Ni-W 합금은 $400^{\circ}C$이상의 온도에서 열처리하면 강한 [111]방향성을 가지며 재결정하였으며, $800^{\circ}C$이상의 온도에서는 과고용된 W이 석출하였다. 합금조성 및 결정구조의 전류밀도 의존성을 이용하여 Ni-30%W과 Ni-50%W 합금층이 반복되는 결정질/비정질의 다층도금을 제조하였다.

  • PDF

W-Ni-Fe 중합금의 기계적 특성에 미치는 Fe7W6상(μ-phase)의 영향 (Effect of Fe7W6 Phase (μ-phase) on Mechanical Properties of W-Ni-Fe Heavy Alloy)

  • 전용진;김세훈;김영도
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.720-725
    • /
    • 2011
  • W-Ni-Fe heavy alloys have been used in various fields, such as kinetic energy penetrators and radiation shielding materials, due to their high density and good mechanical properties. In this study, the sintering of W-Ni-Fe alloys with various Ni/Fe ratios was demonstrated to improve the mechanical properties and penetration capabilities of heavy alloys by formation of interfacial phase. The microstructural changes and the mechanical properties of the W-Ni-Fe alloys after liquid-phase sintering were investigated. The Vickers hardness and tensile strength of the 95W1.3Ni3.7Fe sample, which had coated W grains by $Fe_7W_6$ phase (${\mu}$-phase), were 450 Hv and 1560 MPa, respectively. As a result, enhancement of the mechanical properties was considered to have uniformly generated ${\mu}$-phase around W grains.

1N 염산 용액에서 Fe-Cr-Ni-W 합금의 양분극 거동에 관한 연구 (The Anodicc PolarizationBehavior of Fe-Cr-Ni-W alloy in 1N HCI Solution)

  • 윤재돈;강성군
    • 한국표면공학회지
    • /
    • 제21권4호
    • /
    • pp.176-182
    • /
    • 1988
  • Effects of Cr, Ni and W on the anodic polarization behavior were investigated for Fe-Cr-Ni-W alloys in deaerated 1N HCI solution. Surface films formed on the polarization were analysed using AES, SEM and EDAX. A higerconcentration of tungten was found in the surface oxide film compared to the matrix. It played an importanet role on incresing the stability of the passive film. The presence of an adequate amount of Cr was essential to increase the pitting resistance of the alloys in acid chloride media. Under 12 wt%cr,alloys containing 6wt%W did not exhidit any passivity at all. The main role of Ni was to control the microstructure rather than to modify the corrosion resistance. In 23 cr-14Ni-^W alloy, the duplex microstructure of ferrite($\delta$-phase) in an austenic matrix was developed. The reson why proferred pitting appeared in austenite and ferrite/austenite interface was that ferrite had more amount of Cr and W than austenite.

  • PDF

Electrochemical Behavior and Biocompatibility of Co-Cr Dental Alloys

  • Kang, Jung-In;Yoon, Jun-Bin;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.107-107
    • /
    • 2015
  • In order to investigate electrochemical behavior and biocompatibility of Co-Cr dental alloy by electrochemical corrosion test and MTT assay, the xCo-25Cr-yW-zNi alloys were used in this study. Samples of Co-Cr-W-Ni alloys were manufactured using arc melting furnace. The microstructure of the alloys was examined by optical microscopy (OM), Field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), MTT assay, and corrosion test. Corrosion resistance increased slightly as cobalt (Co) content increased. And bioactivity was concerned with nickel (Ni) and tungsten (W). Biocompatibility of Co-Cr alloy depended on Ni and W contents.

  • PDF

W-Ni-Fe 중합금의 미세조직 변화에 대한 μ-phase의 영향 (Effect of μ-Phase on Microstructural Change of W-Ni-Fe Heavy Alloys)

  • 김대건;김은표;김영도
    • 한국재료학회지
    • /
    • 제12권1호
    • /
    • pp.16-20
    • /
    • 2002
  • In this study, the 95W heavy alloys of 3/7, 5/5 and 7/3 of Ni/Fe ratio were sintered at the temperature range between 1420 and $1480^{\circ}C$ for 1h and their microstructures were discussed for an effect of the ${\mu}$-phase $(Fe_7W_6)$ on the microstructure. The ${\mu}$-phase was observed in the only 95W-1.5Ni-3.5Fe alloy of 3/7 and it is thought to be formed and grown from the surface of the W particle. The W particle was surrounded with the ${\mu}$-phase and there were only the W particles and this phase without Ni-Fe-W matrix at the most part. The ${\mu}$-phase changed the interphase structure in the alloy and the grain growth of the W was suppressed because of interrupting the solution-reprecipitation of the W. The W content in the matrix was considered to be lowered due to the interruption of the solution-reprecipitation and the formation of the ${\mu}$-phase in the .

Microstructures of W-Mo-Ni-Fe Heavy Alloys

  • Lin, Kuan-Hong;Hsu, Chen-Siang;Lin, Shun-Tian
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.937-938
    • /
    • 2006
  • Tungsten heavy alloys with different ratios of Mo and Ni-Fe matrix were liquid-phase-sintered to investigate their microstructural evolution. Results indicated that increased Mo in the alloy promoted the formation of a (W,Mo)(Ni,Fe) type intermetallic compound in the furnace-cooled condition. It was a monoeutectic reaction when the added Mo content was higher than 49at.%, or a eutectic reaction when this value was between 37at,% to 49at.%. When Mo was added between 25at.% to 37at.%, the precipitation of the intermetallic compound took place by either a eutectoid or peritectoid reaction.

  • PDF

중성자 회절법에 의한 Ni-W 합금 소결체의 격자상수 측정 (Estimation of a Lattice Parameter of Sintered Ni-W Alloy Rods by a Neutron Diffraction Method)

  • 김찬중;김민우;박순동;전병혁;장석원;성백석
    • 한국분말재료학회지
    • /
    • 제15권3호
    • /
    • pp.239-243
    • /
    • 2008
  • Ni-W(1-5 at.%) alloy rods were made by powder metallurgy process including powder mixing, compacting and subsequent sintering. Ni and W powder of appropriate compositions were mixed by a ball milling and isostatically pressed in a rubber mold into a rod. The compacted rods were sintered at $1000^{\circ}C-1150^{\circ}C$ at a reduced atmosphere for densification. The lattice parameters of Ni-W alloys were estimated by a high resolution neutron powder diffractometer. All sintered rods were found to have a face centered cubic structure without any impurity phase, but the diffraction peak locations were linearly shifted with increasing W content. The lattice parameter of a pure Ni rod was $3.5238{\AA}$ which is consistent with the value reported in JCPDS data. The lattice parameter of N-W alloy rods increased by $0.004{\AA}$ for 1 atomic % of W, which indicates the formation of a Ni-W solid solution due to the substitution of nickel atoms by tungsten atoms of larger size.