• Title/Summary/Keyword: Ni-W 전해도금

Search Result 10, Processing Time 0.025 seconds

Effect of heat treatment on hardness of electrodeposited Ni-W alloys (전해 Ni-W 합금의 경도에 미치는 열처리의 영향)

  • Jeong, Sang-Il;Im, Seong-Bong;Lee, Ju-Yeol;Jang, Do-Yeon;Jeong, Yong-Su
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.305-305
    • /
    • 2012
  • Ni-W 합금의 고경도 특성을 연구하기 위하여 전해 도금 방법을 이용하여 Ni-W 합금을 제작하였다. 전해 도금시 여러 가지 제어인자 중 전류밀도, pH, Ni 금속염의 양 그리고 도금욕의 온도 등을 변수로 하여 실험을 하였다. 도금층 내 Ni과W의 함량 조성비를 EDS를 이용하여 분석하였으며, 각각의 변수에 따른 Ni-W 합금의 결정구조를 XRD를 이용하여 측정하였다. Ni-W 합금 도금층내 성분 조성비 및 결정구조에 따른 경도를 비커스 경도계를 이용하여 측정하였다.

  • PDF

Elevation of quality in Zinc & Zinc-Nickel plating for Automobile Parts (자동차부품 Zn 및 Zn-Ni합금도금 품질기술향상)

  • Hwang, Hwan-Il;Kim, Yu-Sang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.204-204
    • /
    • 2011
  • 최근 자동차수명의 연장, 고품질, 내식내마모성 향상의 요구에 따라 아연도금 및 합금도금의 친환경화, 아연합금도금특성 향상, 흑색화 실현, 아연-철, 아연-니켈 벤딩성 향상, 주석-아연 합금도금과 무전해 Ni-W-P, Ni-B-W, 전해 NiSiC-PTFE, Ni-Diamond복합도금 등의 도금현장 적용과 도금 후 3가 크로메이트 도장 밀착성에 대한 품질기술지원이 요구되고 있다.

  • PDF

Influence of Internal Stress on Plating Crack in Ni-W Alloy Electroplating (Ni-W 합금도금의 피막 균열에 미치는 도금 내부응력의 영향)

  • Kim, Yu-Sang
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.05a
    • /
    • pp.137-138
    • /
    • 2015
  • Ni-W 합금도금은 내마모성, 내산성 및 내열성 등의 여러 특성을 가지며 높은 피막경도도 안정하게 얻어지기 때문에 경질 Cr 도금의 대체도금으로서 유리 성형용 금형, 롤러 표면재료, 자동차 접동부품 등 다양한 공업 분야와 제품에 적용되고 있다. Ni-W 합금도금은 도금액 및 전해조건에 따라서 도금 피막에 균열이 생기는 경우가 있다. 도금 피막의 균열 발생요인으로서 도금재료의 환경온도에 의한 열응력, 도금 피막과 기재와의 팽창 수축 차이에 의한 영향을 생각할 수 있다. 도금 내부응력의 발생이유로서 공석한 수소의 이탈설, 결정합체설, 이외에 과잉 에너지설 및 결자결함설도 제안되고 있다.

  • PDF

A Study on Corrosion Resistance and Electrical Surface Conductivity of an Electrodeposited Ni-W Thin Film (전해도금에 의한 Ni-W 합금의 내식성 및 표면 전도도 특성 연구)

  • Park, Je-Sik;Jeong, Goo-Jin;Kim, Young-Jun;Kim, Ki-Jae;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.2
    • /
    • pp.68-73
    • /
    • 2011
  • A Ni-W thin-film was synthesized by electrodeposition, and its corrosion resistance and electrical surface conductivity were investigated. Amount of tungsten in the Ni-W thin-film increased linearly with current density during the electrodeposition, and crack-free and low-crystalline Ni-21 at.%W coating layer was obtained. Corrosion resistances of the Ni-W thin-films were examined with an anodic polarization method and a storage test in a strong sulfuric acid solution. As a result, the Ni-21 at.%W thin-film exhibited the greatest corrosion resistance, and maintained the electrical surface conductivity even after the severe corrosion test, which could be applicable as a surface treatment for advanced metallic bipolar plates in fuel cell or redox flow battery systems.

Electrolysis for NiW Functional Alloy Plating (NiW 기능성 합금도금을 위한 전해)

  • Jeong, Goo-Jin;Lee, Churl-Kyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • A NiW functional alloy plating was investigated as variables of metal ion concentration, complexing agent, temperature, pH and applied current density. Even if numerous studies on reaction mechanism of NiW induced codeposition were carried out during couples of decade, it has not been acceptable reaction mechanism. This study was focused on the effect of the plating variables on the alloy composition in the NiW alloy plating. Applied current density could control mainly the alloy composition rather than other plating variables. It has also been confirmed that the functional alloy plating such as layered or gradient plating was possible by controlling applied current density.

A study on the effect of alumina coating on NiO dissolution in molten carbonate fuel cell (용융탄산염형 연료전지의 NiO 공기극의 용해거동에 미치는 알루미나 코팅효과에 대한 연구)

  • Ryu B. H.;Yoon S. P.;Han J;Nam S. W.;lim T.-H.;Hong S.-A.
    • New & Renewable Energy
    • /
    • v.1 no.1 s.1
    • /
    • pp.64-71
    • /
    • 2005
  • The stability of alumina-coated NiO cathodes was studied in $Li_{0.62}/K_{0.38}$ molten carbonate electrolyte. Alumina was effectively coated on the porous Ni plate using galvanostatic pulse plating method. The deposition mechanism of alumina was governed by the concentration of hydroixde ions near the working electrode, which was controlled by the temperature of bath solution. Alumina-coated NiO cathodes were formed to $A1_2O_3-NiO$ solid solution by the oxidation process and their Ni solubilities were were than that of NiO up to the immersion time of 100h. However, their Ni solubilities increased and were similar to that of the bare NiO cathode after 100h. It was because aluminum into the solid solution was segregated to $\alpha-LiAlO_2$ on the NiO and its Product did not Play a role of the Physical barrier against NiO dissolution.

  • PDF

Ni Electroplating in the Emulsions of Supercritical $CO_2$ Formed by Ultrasonar (초음파를 이용한 초임계 이산화탄소 에멀젼내 Ni 전해도금)

  • Koh M. S.;Joo M. S.;Park K. H.;Kim H. D.;Kim H. W.;Han S. H.;Sato Nobuaki
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.6
    • /
    • pp.344-349
    • /
    • 2004
  • Emulsions were formed through putting small quantity of nickel electroplating solution into supercritical carbon dioxide, and then electroplating in the $sc-CO_2$ emulsions was conducted. It is an environmental-friendly technology that can solve the treatment of a large quantity of toxic plating wastewater, which is a big problem in the existing wet plating, and also can reduce secondary waste generation fundamentally. Supercritical carbon dioxide emulsions enhanced by ultrasonic horn were formed by non-ionic surfactant and nickel solution. Plating condition within emulsions was set up as 120bar and $55^{\circ}C$ through measurement of electrical conductivity following the pressure change. Experiments were conducted respectively against supercritical carbon dioxide emulsions electroplating and general chemical electroplating, and then their results were compared and analyzed. As the experiment result utilizing emulsions, plating surface was formed very evenly even with a small quantity of electroplating solution, and fine particles were plated compactly without any pinhole or crack due to hydrogenation, which occurs in general electroplating. Used electroplating solution can be reused through recovery process. Therefore, this technology will be able to be applied as new clean technology in electro-plating.

Flip Chip Solder Joint Reliability of Sn-3.5Ag Solder Using Ultrasonic Bonding - Study of the interface between Si-wafer and Sn-3.5Ag solder (초음파를 이용한 Sn-3.5Ag 플립칩 접합부의 신뢰성 평가 - Si웨이퍼와 Sn-3.5Ag 솔더의 접합 계면 특성 연구)

  • Kim Jung-Mo;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.23-29
    • /
    • 2006
  • Ultrasonic soldering of Si-wafer to FR-4 PCB at ambient temperature was investigated. The UBM of Si-substrate was Cu/ Ni/ Al from top to bottom with thickness of $0.4{\mu}m,\;0.4{\mu}m$, and $0.3{\mu}m$ respectively. The pad on FR-4 PCB comprised of Au/ Ni/ Cu from top to bottom with thickness of $0.05{\mu}m,\;5{\mu}m$, and $18{\mu}m$ respectively. Sn-3.5wt%Ag foil rolled to $100{\mu}m$ was used for solder. The ultrasonic soldering time was varied from 0.5 s to 3.0 s and the ultrasonic power was 1,400 W. The experimental results show that a reliable bond by ultrasonic soldering at ambient temperature was obtained. The shear strength increased with soldering time up to a maximum of 65 N at 2.5 s. The strength decreased to 34 N at 3.0 s because cracks were generated along the intermetallic compound between Si-wafer and Sn-3.5wt%Ag solder. The Intermetallic compound produced by ultrasonic soldering between the Si-wafer and the solder was $(Cu,Ni)_{6}Sn_{5}$.

  • PDF