• 제목/요약/키워드: Ni-Ti shape-memory alloys

검색결과 61건 처리시간 0.022초

치과용 Ni-Ti합금의 표면특성에 미치는 Mo함량의 영향 (Effects of Mo Content on Surface Characteristics of Dental Ni-Ti Alloys)

  • 최한철;김재운;박순균
    • Corrosion Science and Technology
    • /
    • 제22권1호
    • /
    • pp.64-72
    • /
    • 2023
  • Ni-Ti shape memory alloy for dental nerve treatment devices was prepared by adding Mo to Ni-Ti alloy to improve flexibility and fatigue fracture characteristics and simultaneously increase corrosion resistance. Surface properties of the alloy were evaluated. Microstructure analysis of the Ni-Ti-xMo alloy revealed that the amount of needle-like structure increased with increasing Mo content. The shape of the precipitate showed a pattern in which a long needle-like structure gradually disappeared and changed into a small spherical shape. As a result of XRD analysis of the Ni-Ti-xMo alloy, R-phase structure appeared as Mo was added. R-phase and B2 structure were mainly observed. As a result of DSC analysis, phase transformation of the Ti-Ni-Mo alloy showed a two-step phase change of B2-R-B19' transformation with two exothermic peaks and one endothermic peak. As Mo content increased, R-phase formation temperature gradually decreased. As a result of measuring surface hardness of the Ti-Ni-Mo alloy, change in hardness value due to the phase change tended to decrease with increasing Mo content. As a result of the corrosion test, the corrosion potential and pitting potential increased while the current density tended to decrease with increasing Mo content.

형상기억합금을 이용한 초소형 액츄에이터 (Shape Memory Alloy Microactuators)

  • 김병욱;김광수;조동일
    • 한국정밀공학회지
    • /
    • 제13권9호
    • /
    • pp.54-61
    • /
    • 1996
  • Because of its high energy density, the use of shape memory alloys(SMA) in designing microactuatiors is gaining much attention in recent years. Shape memory alloys can undergo a shape change at a low temperature with a small applied deformation force, and retain this deformation until they are heated, at which point they return to the original shape. This is called the shape memory effect(SME), and a plethora of alloys show this effect. Among them, TiNi-based alloys have relatively high electrical resistivity, which to develope helical-shape memory springs. These springs are used to develop fast protatonist/antagonist configuration actuators. The developed actuator has an actuation speed of 1 mm per 15 .approx. 20 ms and a minimum operating period of 2 sec.

  • PDF

THE INVESTIGATION OF PSEUDOELASTIC NITI WIRES FOR DAMPING USES

  • Pan, Qiang;Cho, Chong-Du;Lu, Sheng
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.154-159
    • /
    • 2007
  • Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its instinct characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. Previous researches found the NiTi wires own higher damping property than the bars; therefore the wire form is adopted in this study. A loss factor is introduced for measuring the damping property of the NiTi wires. The experimental observation shows the mechanical behaviors of NiTi wires are dependent on temperature, strain rate and strain amplitude. Moreover, it is found the first several decades of loading-unloading cycles can obviously influence the property of NiTi wires under the same working conditions.

  • PDF

정밀 주조한 생체용 Ni-Ti합금의 조성변화에 따른 특성 연구 (A Study of the Characteristics of Cast Ni-Ti Alloy for Biomaterial with Compositional Change)

  • 권오원;김교한
    • 대한의용생체공학회:의공학회지
    • /
    • 제14권3호
    • /
    • pp.283-290
    • /
    • 1993
  • In thls study, the effects of the composltional change of cast Ni-Ti alloys on its characteristics including mechanical properties, phase transformation temperature, and ion releasing rate were investigated. brittle:behavior was shown in the stress-strain curve of the alloy containing low Ti content (Ni-44.0%Ti). By increasing the Ti content, the trend in stress-strain curves changed from that of superelasticity to that of shape memory effect(Ni-44.4%Ti, Ni-45.1%Ti, Ni-45, 5%Ti). Phase transformation temperature ($A_f, {\;}M_5$ point) increased with increasing the Ti content. lon releasing rate of four types of Mi-Ti alloys was very low compared to that of the dental commerical Ni-Cr alloy.

  • PDF

Identification of crystal variants in shape-memory alloys using molecular dynamics simulations

  • Wu, Jo-Fan;Yang, Chia-Wei;Tsou, Nien-Ti;Chen, Chuin-Shan
    • Coupled systems mechanics
    • /
    • 제6권1호
    • /
    • pp.41-54
    • /
    • 2017
  • Shape-memory alloys (SMA) have interesting behaviors and important mechanical properties due to the solid-solid phase transformation. These phenomena are dominated by the evolution of microstructures. In recent years, the microstructures in SMAs have been studied extensively and modeled using molecular dynamics (MD) simulations. However, it remains difficult to identify the crystal variants in the simulation results, which consist of large numbers of atoms. In the present work, a method is developed to identify the austenite phase and the monoclinic martensite crystal variants in MD results. The transformation matrix of each lattice is calculated to determine the corresponding crystal variant. Evolution of the volume fraction of the crystal variants and the microstructure in Ni-Ti SMAs under thermal and mechanical boundary conditions are examined. The method is validated by comparing MD-simulated interface normals with theoretical solutions. In addition, the results show that, in certain cases, the interatomic potential used in the current study leads to inconsistent monoclinic lattices compared with crystallographic theory. Thus, a specific modification is applied and the applicability of the potential is discussed.

Ni-Ti합금의 표면개질에 미치는 시효처리 온도의 영향 (Effect of Aging Treatment Temperature on Surface Modifications in Ni-Ti alloy)

  • 박제민;김완철
    • 열처리공학회지
    • /
    • 제22권6호
    • /
    • pp.368-374
    • /
    • 2009
  • Nickel titanium shape memory alloys (NiTi) have been investigated for applications in the biomedical industry. However, little is known about the influences of surface modifications on the propertise of these alloys. The effect of electropolishing and heat treatments was found to exhibit significant surface roughness. Change of phase was B2, r-phase and B19' by heat treatments. In this study, effect of the electropolishing conditions on surface roughness is investigated in Ni-Ti alloys (Nitinol). Variation in phases with heat treatment temperature is investigated for a Ni-Ti alloy by X-ray diffraction and DSC. Characteristic of the microstructure have been observed by SEM. Surface roughness have been measured by AFM. The results clearly show that significant different in surface property to heat treated at $500^{\circ}C$ (R-phase). $TiO_2$ phases preciritated all of the specimens. It is not good effect of surface roughness because made to surface relief. The surface roughness appears to be important in the property of Ni-Ti alloys for biomedical applications.

Ti-51.5at.%Ni 형상기억합금 단결정의 소성변형 거동 (Plastic Deformation Behavior of Ti-51.5at.%Ni Shape Memory Alloy Single Crystals)

  • 전중환
    • 열처리공학회지
    • /
    • 제15권1호
    • /
    • pp.9-15
    • /
    • 2002
  • Deformation behavior of nickel-rich Ti-51.5at.%Ni single crystals was investigated over a wide range of temperatures(77 to 440K) and strain levels(up to 9%) in compression. These alloys combined superior strength with wide range of pseudoelasticity temperature interval(~200K). The slip deformation in [001] orientation did not occur due to the prevailing slip system, and consequently, exhibited pseudoelastic deformation at temperatures ranging from 77 to 283K and 273 to 440K for the solutionized and over-aged cases, respectively. The critical transformation stress levels were in the range of 800 to 1800MPa for the solutionized case, and 200 to 1000MPa for the over-aged case depending on the temperature and specimen orientation. These stress levels are considerably higher compared to these class of alloys having lower Ni contents. The maximum transformation strains, measured from incremental straining experiments in compression, were lower compared to the phenomenological theory with Type II twinning. A compound twinning model depending on the successive austenite(B2) to intermediate phase(R) to martensite(B19') transformation predicts lower transformation strains compared to the Type II twinning case.

Compressive behavior of concrete confined with iron-based shape memory alloy strips

  • Saebyeok, Jeong;Kun-Ho E., Kim;Youngchan, Lee;Dahye, Yoo;Kinam, Hong;Donghyuk, Jung
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.431-444
    • /
    • 2022
  • The unique thermomechanical properties of shape memory alloys (SMAs) make it a versatile material for strengthening and repairing structures. In particular, several research studies have already demonstrated the effectiveness of using the heat activated shape memory effect of nickel-titanium (Ni-Ti) based SMAs to actively confine concrete members. Despite the proven effectiveness and wide commercial availability of Ni-Ti SMAs, however, their high cost remains a major obstacle for applications in real structural engineering projects. In this study, the shape memory effect of a new, much more economical iron-based SMA (Fe-SMA) is characterized and the compressive behavior of concrete confined with Fe-SMA strips is investigated. Tests showed the Fe-SMA strips used in this study are capable of developing high levels of recovery stress and can be easily formed into hoops to provide effective active and passive confining pressure to concrete members. Compared to concrete cylinders confined with conventional carbon fiber-reinforced polymer (CFRP) composites, Fe-SMA confinement yielded significantly higher compressive deformation capacity and residual strength. Overall, the compressive behavior of Fe-SMA confined concrete was comparable to that of Ni-Ti SMA confined concrete. This study clearly shows the potential for Fe-SMA as a robust and cost-effective strengthening solution for concrete structures and opens possibilities for more practical applications.

RESEARCH ON SHAPE MEMORY ALLOYS IN MEXICO

  • Jara, David Rios
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 1992년도 추계학술발표강연 및 논문개요집
    • /
    • pp.1-1
    • /
    • 1992
  • Shape Memory Alloys have attracted the interest of a great number of researchers in the world, and Mexico is not the exception. Research in this field started ten years ago, and is actually an active line covering the classical Cu-based and Ti-Ni alloys, but also the new Fe-based alloys. Although more basic studies have been performed at the present time, interest for applied research and technological goals is increasing. In this work we present a series of studies carried on these Shape Memory Alloys by the groups in Mexico, and explain what the interest of our groups are in the next future in this are of the Materials Science. Interdisciplinary work has been necessary in the characterization of the different alloys, and multiple techniques have been used, like Mossbauer spectroscopy, thermoelectric power, electron microscopy, ultrasound techniques, neutron and x-ray diffraction, calorimetry, among others. Collaboration With other groups in Europe and in the United States have become highly useful and productive, and some examples of such activities are also reported.

  • PDF