• 제목/요약/키워드: Ni-Fe alloy

검색결과 452건 처리시간 0.03초

가스분사 분말로부터 고온 압출된 Al-Ni-Mm-(Cu, Fe)합금들의 미세구조 및 기계적 성질 (Microstructure and Mechanical Properties of Al-Ni-Mm-(Cu, Fe) Alloys Hot-Extruded from Gas-Atomized Powders)

  • 김혜성
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.137-143
    • /
    • 2006
  • The effects of Cu and Fe additions on the thermal stability, microstructure and mechanical properties of $Al_{85}-Ni_{8.5}-Mm_{6.5},\;Al_{84}-Ni_{8.5}-Mm_{6.5}Cu_1,\;Al_{84}-Ni_{8.5}-M_{m6.5}Fe_1$ alloys, manufactured by gas atomization, degassing and hot-extrusion were investigated. Gas atomization, with a wide super-cooled liquid region, allowed the alloy powders to exhibit varying microstructure depending primarily on the powder size and composition. Al hotextruded alloys consisted of homogeneously-distributed fine-grained fcc-Al matrix and intermetallic compounds. A substitution of 1 at.% Al by Cu increased the thermal stability of the amorphous phase and produced alloy microstructure with smaller fcc-Al grains. On the other hand, the same substitution of 1 at.% Al by Fe decreased the stability of the amorphous phase and produced larger fcc-Al grains. The formation of intermetallic compounds such as $Al_3Ni,\;Al_{11}Ce_3\;and\;Al_{11}La_3$ was suppressed by the addition of Cu or Fe. Among the three alloys examined, the highest Vickers hardness and compressive strength were obtained for $Al_{84}-Ni_{8.5}-M_{m6.5}Cu_1$ alloy, and related to the finest fcc-Al grain size attained from increased thermal stability with Cu addition.

Ni/MH 2차전지용 TiFe1-xNix 합금전극의 방전특성에 대한 열처리의 영향 (Effects of Heat-treatments on Discharge Characteristics of TiFe1-xNix Alloy Electrodes for Ni/MH Secondary Battery)

  • 정순돌;정상식;안효준;김기원
    • 한국수소및신에너지학회논문집
    • /
    • 제9권4호
    • /
    • pp.135-141
    • /
    • 1998
  • Fe-Ti계 수소저장합금 전극의 방전특성을 개선하기 위하여 Ni을 첨가한 $TiFe_{1-x}Ni_x$ 합금을 제조하여 방전특성과 열처리 온도에 따른 변화를 조사하였다. 합금의 조성은 x = 0.1에서 0.6까지 0.1 단위씩 변화시킨 6가지 조성을 선택하여 각각에 대한 초기방전용량과 충방전사이클에 따른 용량변화를 조사하였다. 초기방전용량은 Ni의 조성이 클수록 증가하다가 x = 0.6 에서 다시 감소하였으며 Ni의 조성이 증가함에 따라 사이클특성은 전반적으로 매우 악화되었다. 열처리온도가 사이클 특성에 미치는 영향을 조사하기 위하여 초기용량이 가장 우수한 $TiFe_{0.5}Ni_{0.5}$ 합금에 대하여 $700{\sim}900^{\circ}C$ 의 온도범위에서 열처리를 시행한 후 방전특성을 조사하였다. 열처리에 의해서 초기용량은 감소되지만 사이클 특성은 현저히 개선되었다. $700{\sim}850^{\circ}C$의 온도범위에서 1시간 열처리한 전극의 경우에 사이클이 진행되면서 방전용량이 크게 회복되었으며, 열처리한 표면조직을 SEM 으로 관찰해 본 결과 이는 충분한 전극강도 및 기공율에 기인한 것으로 생각되었다. $900^{\circ}C$에서 1시간 열처리한 전극은 충분한 기공율을 갖지 못하여 방전특성이 좋지 않음을 알 수 있었다.

  • PDF

FeSi-(Cu, Ni) 결정질 합금 및 FeCrSiBC 비정질 합금 분말코아의 성형성 및 자기적 특성에 미치는 인산염처리 효과 (Effects of the phosphate coating for forming ability and magnetic properties of FeSi-(Cu, Ni) crystalline alloy and FeCrSiBC amorphous alloy powder cores)

  • 장대호;노태환;이태경;최광보;김윤배;김광윤
    • 한국자기학회:학술대회 개요집
    • /
    • 한국자기학회 2004년도 동계학술연구발표회 논문개요집
    • /
    • pp.91-92
    • /
    • 2004
  • PDF

저열팽창성 Fe-29%Ni-17%Co 코바 합금의 고온 변형 거동에 미치는 B 첨가의 영향 (The Effect of B addition on the High Temperature Behavior of Low Thermal Expansion Fe-29%Ni-17%Co Kovar Alloy)

  • 권성희;박종혁;김문철;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.491-492
    • /
    • 2008
  • The effect of B on the hot ductility of Fe-29Ni-17Co Kovar alloy and the mechanism of high temperature deformation behavior were investigated. Hot-tensile test was carried out at the temperature range of $900^{\circ}C-1200^{\circ}C$. Optical microscopy and scanning electron microscopy were used to investigate the microstructure and fracture during hot deformation. The hot ductility of Kovar alloy was drastically increased with the addition of Boron. The improvement of hot ductility results from the grain boundary migration mainly due to the dynamic recrystallization at lower temperature range($900^{\circ}C$).

  • PDF

Fe-Cr-Ni-Si-C계 경면처리 합금의 Cavitaon Erosion 저항성에 미치는 Vanadium 첨가의 영향 (Effect of Vanadium Addition on the Cavitation Erosion Resistance of Fe-Cr-Ni-Si-C Hardfacing Alloy)

  • 김경오;김준기;장세기;김선진;강성군
    • 한국표면공학회지
    • /
    • 제31권5호
    • /
    • pp.297-303
    • /
    • 1998
  • The influences of vanadium addition on the cavitation erosion resistance pf Fe-Cr-Ni-Si-C hardfacing alloy were investigated using a vibratory apparatus up to 30 hrs. It was shown that 1wt.%V additioned alloy improved the resistance to cavitation damage. However, further increase in V content up to 2wt.% reduced the cavitation erosion resistance. It was considered that the addition of V developed the cavitation erosion resistance by reducing the stacking fault energy of Fe-Cr-Ni-Si-C alloy. However, the further increase in V content seemed to reduce the cavitation erosion resistance by increasing the matrix/carbide interfacial area, which was the preferential sites of the cavitation damage.

  • PDF

Electrodeposition Characteristics and Magnetic Properties of CoFeNi Thin Film Alloys

  • Song, Jae-Song;Yoon, Do-Young;Han, Choon;Kim, Dae-Heum;Park, Dyuk-Young;Myung, No-Sang
    • 전기화학회지
    • /
    • 제5권1호
    • /
    • pp.17-20
    • /
    • 2002
  • 다양한 조성의 CoFeNi합금이 chloride bath와 sulfate bath에서 전해도금 되어졌고, 합금의 도금 특성과 자기특성이 관찰되어졌다. CoFeNi합금 박막의 전해도금에 있어서 Fe조성의 증가는 chloride bath에서보다 sulfate bath에서 빠르게 증가하였다. 전류효율은 큰 변화가 보이지 않는 chloride bath와 달리 sulfate bath에서는 $750\%$에서 $50\%$로 큰 폭으로 감소하였다. Co, Fe, Ni조성이 $80\%,\;10\%,\;10\%$되는 CoFeNi합금이 이번 실험에서 가장 우수한 연자성 재료로 평가되었으며, 그때의 Coercivity는 3 Oe이고 높은 squareness값을 보였다

국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화 (Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy)

  • 조성암;고현권
    • 대한치과보철학회지
    • /
    • 제27권1호
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과 (Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts)

  • 이유진;구본율;백성호;박만호;안효진
    • 한국재료학회지
    • /
    • 제25권8호
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

Ni-Fe합금도금층의 조선 및 우선배향에 미치는 전해조건의 영향 (The effect of electrolysis conditions on the composition and preferred orientation of Ni-Fe alloy electrodeposits)

  • 예길촌;김용웅;김용희;김용주
    • 한국표면공학회지
    • /
    • 제27권6호
    • /
    • pp.319-326
    • /
    • 1994
  • The effects of electrolysis conditions on the composition and preferred orientation of Ni-Fe alloy were studied using the sulfate-chloride baths paddle agitated. Cathode current efficiency is higher in the deposits from bath 2 than that of deposits from bath 1. The Fe content of alloy deposits from bath 2 is nearly constant(19∼21wt.%) in the wide range of current density, while it decreases noticeably with current density in the deposits from bath 1. The variation of Fe content at the edge of specimen is lower in deposits from bath 2 than those from bath 1. The alloy deposits show (111) & (200) preferred orientation for the deposits from bath 1 and bath 2 respectively.

  • PDF

스퍼터링 방법으로 성장한 코발트크롬철망간니켈 고엔트로피 질산화물 박막의 구조특성 (Structural Characterization of CoCrFeMnNi High Entropy Alloy Oxynitride Thin Film Grown by Sputtering)

  • 이정국;홍순구
    • 한국재료학회지
    • /
    • 제28권10호
    • /
    • pp.595-600
    • /
    • 2018
  • This study investigates the microstructural properties of CoCrFeMnNi high entropy alloy (HEA) oxynitride thin film. The HEA oxynitride thin film is grown by the magnetron sputtering method using nitrogen and oxygen gases. The grown CoCrFeMnNi HEA film shows a microstructure with nanocrystalline regions of 5~20 nm in the amorphous region, which is confirmed by high-resolution transmission electron microscopy (HR-TEM). From the TEM electron diffraction pattern analysis crystal structure is determined to be a face centered cubic (FCC) structure with a lattice constant of 0.491 nm, which is larger than that of CoCrFeMnNi HEA. The HEA oxynitride film shows a single phase in which constituting elements are distributed homogeneously as confirmed by element mapping using a Cs-corrected scanning TEM (STEM). Mechanical properties of the CoCrFeMnNi HEA oxynitride thin film are addressed by a nano indentation method, and a hardness of 8.13 GPa and a Young's modulus of 157.3 GPa are obtained. The observed high hardness value is thought to be the result of hardening due to the nanocrystalline microstructure.