• Title/Summary/Keyword: Ni-Cr-Si alloy

Search Result 76, Processing Time 0.036 seconds

Microstructures and Mechanical Properties of Beryllium(Be)-free Ni-Cr-Mo based Alloys for Metal-Ceramic Crown (베릴륨(Be)이 미 첨가된 치과도재소부용 Ni-Cr-Mo계 합금의 미세조직 및 기계적 성질 특성)

  • Song, Kyung-Woo;Go, Eun-Kyoung;Lee, Jung-Hwan;Jung, Jong-Hyun;Noh, Hak;Han, Jae-Ick
    • Journal of Technologic Dentistry
    • /
    • v.28 no.2
    • /
    • pp.321-329
    • /
    • 2006
  • The popularity of Ni-Cr-Mo based metal alloys for metal-ceramic crown have increased recently because of low price, superior yield strength and rigidity. the use of these alloys give them the potential advantage of thinner copping with the required rigidity for long span bridges. The purpose of this study was to assess the microstructures and mechanical properties of Ni-Cr-Mo-(Si,Al,Nb,Zr,Ti.Cu,Mm) based Alloys not containing beryllium(Be) related toxic effects. The abtained results indicated that as-cast these specimen alloys showed compositional and microstructural differences, and mechanical properties values of Ni69Cr20Mo5Si2Al4 alloy among these specimen alloys was found to be superior to those of commercial Ni-Cr based alloy using in market place today.

  • PDF

Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete (콘크리트 보강재용 Fe-Mn-Si-Ni-Cr-TiC계 형상기억합금의 내식성)

  • Joo, Jaehoon;Lee, Hyunjoon;Kim, Dohyoung;Lee, Wookjin;Lee, Junghoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.52 no.6
    • /
    • pp.364-370
    • /
    • 2019
  • Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

Wear characteristics of High Carbon 9CrSi Alloy Steel of Laser Surface Cladding (Laser Surface Cladding 고탄소 9CrSi 합금강의 마모 특성)

  • Yu, Neung-Hui;Gang, Seong-Gun
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.813-819
    • /
    • 2001
  • The microstructure and the distribution of hardness of Co and A1 alloy powder cladding layer in high carbon 9CrSi alloy steel for roll materials cladded by laser surface cladding were investigated. And, for the evaluation of soundness as the roll materials, we examined the wear resistance of the cladding materials with the wear appratus of pin on disc type. The experimental results showed that the microstructure of laser cladding layer was constituted with the clad surface layer, the alloy layer, the heat treatment layer with base metal. The wear resistance of Ni alloy Powder cladding material was superior to that of Co alloy powder cladding material both at the low speed (0.46m/s) and the high speed(0.92m/s). It seemed that the behavior of wear showed the abrasive wear at the early stage and the adhesive wear at the late stage.

  • PDF

The Structural and Electrical Properties of NiCr Alloy for the Bottom Electrode of High Dielectric(Ba,Sr)Ti O3(BST) Thin Films

  • Lee, Eung-Min;Yoon, Soon-Gil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • NiCr alloys are prepared onto poly-Si/ $SiO_2$/Si substrates to replace Pt bottom electrode with a new one for integration of high dielectric constant materials. Alloys deposited at Ni and Cr power of 40 and 40 W showed optimum properties in the composition of N $i_{1.6}$C $r_{1.0}$. The grain size of films increases with increasing deposition temperature. The films deposited at 50$0^{\circ}C$ showed a severe agglomeration due to homogeneous nucleation. The NiCr alloys from the rms roughness and resistivity data showed a thermal stability independent of increasing annealing temperature. The 80 nm thick BST films deposited onto N $i_{1.6}$C $r_{1.0}$/poly-Si showed a dielectric constant of 280 and a dissipation factor of about 5 % at 100 kHz. The leakage current density of as-deposited BST films was about 5$\times$10$^{-7}$ A/$\textrm{cm}^2$ at an applied voltage of 1 V. The NiCr alloys are possible to replace Pt bottom electrode with new one to integrate f3r high dielectric constant materials.terials.

EFFECTS OF SPUTTERED NON-PRECIOUS METALLIC THIN FILMS ON THE CHEMICAL BONING BETWEEN DENTAL ALLOY AND PORCELAIN (비귀금속 박막이 치과용합금과 치과용도재와의 화학적결합에 미치는 영향)

  • Cho Sung-Am
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.481-492
    • /
    • 1992
  • Author measured the bonding strength between Dental Porcelain and Nonprecious Dental Alloy and analyzed diffusion Phenomena at the interfaceby by Auger electron spectroscopy and also Electron spectroscopy for Chemical Analysis. The each specimen was sputtered with Al, Cr, In and Sn. 1. Ni whic is the main element of the matris of dental nonprecious alloy diffuse more than the other element and the Ni diffusion rate of each specimen was well coordinated with the bonding strength of each. 2. The Sn thin film suppress the diffusion rate of Ni of matrix into the Dental Porcelain than the In or Cr thin films. 3. The Al thin film suppress the diffusion rate of Ni than the Sn thin film. 4. The main coponent of dental porcelain : Al, Si, Mo diffused into the matrix of alloy. It means that the each element of dental alloy and dental porelain diffused into the each other part.

  • PDF

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Effect of Alloying Elements of Si, Mn, Ni, and Cr on Oxidation of Steels between 1050℃ and 1200℃ in Air (강의 대기 중 1050~1200℃의 산화에 미치는 합금원소 Si, Mn, Ni, Cr의 영향)

  • Lee, Dong Bok
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.4
    • /
    • pp.300-309
    • /
    • 2012
  • Low-carbon steels and a stainless steel were oxidized isothermally and cyclically between $1050^{\circ}C$ and $1200^{\circ}C$ for up to 100 min in air to find the effect of alloying elements of Si, Mn, Ni, and Cr on their oxidation. The most active alloying element of Si was scattered inside the oxide scale, at the scale-alloy interface and as internal oxide precipitates beneath the oxide scale. Manganese, which could not effectively improve the oxidation resistance, was rather uniformly distributed in the oxide scale. Nickel and chromium tended to present at the lower part of the oxide scale. Excessively thick porous scales formed on the low-carbon steels, whereas thin but non-adherent scales containing $Cr_2O_3$ formed on the stainless steel.

A Study on the Optimum Chemical Composition of Insert Metal for Liquid Phase Diffuse Bonding (액상확산접합용 인서트금속의 화학조성 최적화에 관한 연구)

  • 김대업;정승부;강정윤
    • Journal of Welding and Joining
    • /
    • v.18 no.5
    • /
    • pp.90-97
    • /
    • 2000
  • Effect of alloy elements on joinability of insert metal for liquid phase diffusion bonding of heat resistant alloys was investigated in this study. Also, optimum chemical composition of insert metal was explained using interpolation method. The insert metals utilized was commercial Ni-base amorphous foils and newly developed Ni-base filler metals with B, Si and Cr in this study. Melting point and critical interlayer width(CIW) decreased with increasing additional amount of B, Si and Cr, melting point lowering element of the insert metal. Optimized chemical composition of insert metals could be estimated by interpolation method. The optimum amount of B, Si, Cr addition into the insert metal were found to be about 3%, 4% and 3%, respectively. The measured characteristic values, melting point, microhardness in the bonded interlayer and CIW of the insert metals were the almost identical to ones of the calculated results by interpolation method.

  • PDF

Effect of Filler Metal Powder on Microstructure and Polishing Characteristics of the Brazing Diamond

  • Kim, Hoon-Dong;An, Jung-Soo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1138-1139
    • /
    • 2006
  • The present study has shown that the effect of boron and phosphorus in Ni-Cr-Si-X alloy to interfacial reactions and bonding strength of diamond-steel substrate, and the influence of various construction parameters on the formation of the topography of the tool. And these factors are required to making a good brazed tool. The microstructures and phase change of the brazed region were analyzed into SEM, EDS. According to the electron probe microanalysis, while brazing, the chromium present in the brazing alloy segregated preferentially to the surface of the diamond to form a chromium rich reaction product, which was readily wetted by the alloy.

  • PDF