• Title/Summary/Keyword: Ni-Cr Filler metal

Search Result 25, Processing Time 0.019 seconds

Interfacial Structure of Inconel/$Si_3N_4$ Joint Using Ag-Cu-Ti Brazing Metal (Ag-Cu-Ti Brazing 금속을 이용한 Inconel/$Si_3N_4$ 접합의 계면구조)

  • 정창주;장복기;문종하;강경인
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.12
    • /
    • pp.1421-1425
    • /
    • 1996
  • Sintered Si3N4 and Inconel composed of Ni(58-63%) Cr(21-25%) Al(1-17%) Mn(<1%) fe(balance) were pressurelessly joined by using Ag-Cu-Ti brazing filler metal at 950℃ and 1200℃ under N2 gas atmosphere of 1atm and their interfacial structures were investigated. In case that the reaction temperature was low as 950℃ its interfacial structure was "Inconel metal/Ti-rich phase layer/brazing filler metal layer/Si3N4 " Ti used as reactive metal existed in between inconel steel and brazing metal and moved to the interface of between brazing filler metal nd Si3N4 according as reaction temperature increased up to 1200℃. The interfacial structure of inconel steel-Si3N4 reacted at 1200℃ was ' inconel metal/Ni-rich phase layer containing of Fe. Cr and Si/Cu-rich phase layer containing of Mn and Si/Si3N4 " Cr Mn, Ni and Fe diffused to the interface of between brazing filler metal and Si3N4 and reacted with Si3N4 The most reactive components of ingredients of inconel metal were Cr and Mn. On the other hand Ti added as reactive components to Ag-Cu eutectic segregated into Ni-rich phase layer,.

  • PDF

Electrochemical Reaction and Short-Circuit Behavior between Lead Borate Glass Doped with Metal Filler and Ni-Cr Alloy Wire (금속 필러가 첨가된 Pb-B-O계 유리와 Ni-Cr 합금 와이어 간의 전기 화학적 반응과 단락 거동)

  • Choi, Jin Sam;Nakayama, Tadachika
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.471-479
    • /
    • 2021
  • The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.

Effect of Filler Metal in High Vacuum Brazing of Diamond Tools

  • Song, Min-Seok;An, Sang-Jae;Lee, Sang-Jin;Cheong, Ki-Jeong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1307-1308
    • /
    • 2006
  • The purpose of this study was to examine the interfacial reaction between diamond grits and Ni-based, Ag-based, brazing filler metal, respectively. The morphology of the interface between diamond grits and Ni-based, filler metal exhibited a very good condition after this heat treatment. Cr-carbide and Ni-rich compounds were detected by XRD analysis in the vicinity of the interface between diamond grits and Ni-based, filler metal after vacuum induction brazing. Chromium carbide is considered to play an important role in the high bonding strength achieved between diamonds grits and the brazing alloy.

  • PDF

High Temperature Oxidation Behavior of the Brazed Joint in Fe-Cr-Al-Y Alloy (Fe-Cr-AI-Y합금에서 브레이징 접합부의 고온산화거동)

  • Mun, Byeong-Gi;Choe, Cheol-Jin;Park, Won-Uk
    • 연구논문집
    • /
    • s.27
    • /
    • pp.201-208
    • /
    • 1997
  • To improve the joining characteristics of metallic converter substrate for exhaust gas cleaning, high temperature brazing process has been studied. In this study, the effect of chemical composition of brazing filler metal on the oxidation behavior of brazed joints was investigated closely. Brazing was carried out at $1200^\circC$ in vacuum furnace using nickel-based filler metals : BNi-5 powder(Ni-Cr-Si base alloy) and MBF-50 foil(Ni-Cr-Si-B). The MBF-50 containing 1-1.5 wt%B showed relatively poor oxidation resistance of the brazed joints compared to BNi-5, because of the faster invasion of oxygen through the Kirkendal voids along the interface of mother alloy/filler metal.

  • PDF

Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II) (BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

Effect of Additive Powder on Microstructural Evolutions and Mechanical Properties of the Wide-gap Brazed Region in IN738 superalloy (초내열합금 wide-gap 브레이징부의 미세조직 및 기계적 성질 변화에 미치는 첨가금속분말의 영향)

  • Kim Y. H.;Kwun S. I.;Byeon J. W.;Lee W. S.
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.399-407
    • /
    • 2005
  • The effect of IN738 additive powder on microstructure and mechanical properties of the wide-gap region brazed with BNi-3 filler metal powder was investigated. The wide-gap brazing was conducted in a vacuum of $2\times10^{-5}torr\;at\;1200^{\circ}C$ with various powder mixing ratios of additive to filler powders. The microstructures of the wide-gap brazed region were analyzed by SEM and AES. The region brazed with only BNi-3 filler metal powder had a microstructure consisted of proeutectic, binary eutectic and ternary eutectic structure, while that brazed with a mixture of IN738 additive powder and BNi-3 filler metal powder had a microstructure consisted of IN738 additive powder, binary eutectic of $Ni_3B-Ni$ solid solution and (Cr, W)B. The fracture strength of the wide-gap brazed region was about 680 MPa regardless of the additive powder mixing ratios. Cracks were initiated at the (Cr, W)B and binary eutectic of $Ni_3B-Ni$ solid solution, and propagated through them in the wide-gap brazed region, which lowered the fracture strength of the region.

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Study on the interfacial reaction vacuum brazed junction between diamond and Ni-based brazing filler metal (진공 브레이징을 이용한 다이아몬드와 Ni계 페이스트의 계면 거동 연구)

  • Lee, Jang-Hun;Lee, Yeong-Seop;Im, Cheol-Ho;Lee, Ji-Hwan;Song, Min-Seok;Ji, Won-Ho;Ham, Jong-O
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.48-50
    • /
    • 2005
  • Advanced hard materials based on diamond are in common use. In this study our main goal was employed to analyze, the mechanisms for the rich phases and chromium carbide, interface of a diamond grits brazed to a Ni-based brazing filler metal matrix. When Ni-7Cr-3Fe-3B-4Si (wt. %) was utilized as the brazing alloy, an isothermal holding resulted in the various products(Ni-rich/Cr-rich domains, carbide). According to these results, the chemical compounds and chromium carbides products is considered to play an important role in brazing temperature and time. Especially chromium carbide has an influence on brazing junction properties.

  • PDF

Effect of Heating Rates on Microstructures in Brazing Joints of STS304 Compact Heat Exchanger using MBF 20 (MBF 20으로 브레이징한 STS304 콤팩트 열교환기 접합부의 미세조직에 미치는 가열속도의 영향)

  • Kim, Jun-Tae;Heo, Hoe-jun;Kim, Hyeon-Jun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.46-53
    • /
    • 2016
  • Effect of heating rate on microstructure of brazed joints with STS 304 Printed Circuit Heat Exchanger (PCHE),which was manufactured as large-scale($1170(L){\times}520(W)){\times}100(T)$, mm), have been studied to compare bonding phenomenon. The specimens using MBF 20 was bonded at $1080^{\circ}C$ for 1hr with $0.38^{\circ}C/min$ and $20^{\circ}C/min$ heating rate, respectively. In case of a heating rate of $20^{\circ}C/min$, overflow of filler metal was observed at the edge of a brazed joints showing the height of filler metal was decreased from $100{\mu}m$ to $68{\mu}m$. At the center of the joints, CrB and high Ni contents of ${\gamma}$-Ni was existed. For the joints brazed at a heating rate of $0.38^{\circ}C/min$, the height of filler was decreased from $100{\mu}m$ to $86{\mu}m$ showing the overflow of filler was not appeared. At the center of the joints, only ${\gamma}$-Ni was detected gradating the Ni contents from center. This phenomenon was driven from a diffusion amount of Boron in filler metal. With a fast heating rate $20^{\circ}C/min$, diffusion amount of B was so small that liquid state of filler metal and base metal were reacted. But, for a slow heating rate $0.38^{\circ}C/min$, solid state of filler metal due to low diffusion amount of B reacted with base metal as a solid diffusion bonding.