• Title/Summary/Keyword: Ni-Cr Alloy

Search Result 449, Processing Time 0.028 seconds

Effect of yttrium additives on the shear bond strength of porcelain fused to Ni-Cr alloy for porcelain fused metal crown (도재용착용 Ni-Cr계 합금의 이트륨 첨가물이 도재전단결합강도에 미치는 영향)

  • Woo, Je-Seung;Noh, Se-Ra;Noh, Hyeong-Rok;Lim, Chung-Ha;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.41 no.2
    • /
    • pp.71-80
    • /
    • 2019
  • Purpose: In this study, to evaluate the effect of oxide changes on the shear bond strength according to the composition of Ni-Cr alloys for porcelain fused matal crown, T-4 alloys, Zeroy alloys and Zeroy-X alloys were selected. Methods: 20 specimens were fabricated using selected Ni-Cr alloys and porcelain powders. A Ni-Cr alloy having a diameter of 5 mm and a height of 25 mm was produced and the metal surface was polished. Porcelain powder was fired on the polished metal surface to a diameter of 5 mm and a height of 3 mm. The experiment group consisted of three groups, T-4(TNA), Zeroy(ZNA) and Zeroy-X(ZXA). The fabricated specimens were mounted on a jig of a universal testing machine(UTM) and fracture strength was measured by applying a shear force at a UTM crosshead speed of 0.5 mm/min. The fracture strength was calculated as the bond strength between the porcelain and the alloy. The surface of the fractured alloy was analyzed by X-ray diffraction(XRD) and scanning electron microscopy(SEM), and the components of the oxide were measured by energy dispersive X-ray spectroscopy(EDX) line profile method. Results: In SEM, XRD and EDX analysis, yttrium tended to increase the mechanical and chemical bonding forces. The shear bond strength of ZXA group containing yttrium showed the highest value at 27.53 MPa. Conclusion: Based on the results of this study, it is considered that the yttrium-added Ni-Cr alloy is clinically acceptable in porcelain shear bond strength.

Effect of the Alloying Elements in Ag-Cu-Zr-X Brazing Alloy on the Microstructure and the Bond Strength of $Al_2O_3$/Ni-Cr Steel Brazed Joint (알루미나/니켈크롬강 접합체의 미세조직 및 접합강도에 미치는 Ag-Cu-Zr-X 브레이징 합금성분의 영향)

  • Kim, Jong-Heon;Yoo, Yeon-Chul
    • Transactions of Materials Processing
    • /
    • v.7 no.5
    • /
    • pp.465-473
    • /
    • 1998
  • The effect of alloying elements of Ag-Cu-Zr-X brazing alloy on the microstructure and the bond strength of $Al_2O_3/Ni-Cr$ brazed steel joint was investigated. The reaction layer, $ZrO_2$ (a=5.146 ${\AA}$ , b=5.213 ${\AA}$ , c=5.311 ${\AA}$ )was formed at the interface of $Al_2O_3/Ni-Cr$ steel joint by the redox reaction between alumina and Zr. The addition of An and Al to the Ag-Cu-Zr brazing alloy gave rise to changes in the thickness of the reaction product layer and the morphology of the brazement. Sn caused the segregation of Zr was decreased b Al the $ZrO_2$ layer formed at the Ag-Cu-Zr-Al alloy was thinner than that of $ZrO_2$ formed at the Ag-Cu-Zr-An alloy. The fracture shear strength was strongly dependent on the microstructure of the brazement. Brazing with Ag-Cu-Zr-Sn alloy resulted in a better bond strength than with Ag-Cu-Zr or Ag-Cu-Zr-Al alloy.

  • PDF

Effect of Vanadium Addition on the Cavitation Erosion Resistance of Fe-Cr-Ni-Si-C Hardfacing Alloy (Fe-Cr-Ni-Si-C계 경면처리 합금의 Cavitaon Erosion 저항성에 미치는 Vanadium 첨가의 영향)

  • 김경오;김준기;장세기;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.5
    • /
    • pp.297-303
    • /
    • 1998
  • The influences of vanadium addition on the cavitation erosion resistance pf Fe-Cr-Ni-Si-C hardfacing alloy were investigated using a vibratory apparatus up to 30 hrs. It was shown that 1wt.%V additioned alloy improved the resistance to cavitation damage. However, further increase in V content up to 2wt.% reduced the cavitation erosion resistance. It was considered that the addition of V developed the cavitation erosion resistance by reducing the stacking fault energy of Fe-Cr-Ni-Si-C alloy. However, the further increase in V content seemed to reduce the cavitation erosion resistance by increasing the matrix/carbide interfacial area, which was the preferential sites of the cavitation damage.

  • PDF

Study on the Improvement of the Electrochemical Characteristics of Surface-modified V-Ti-Cr alloy by Ball-milling

  • Kim, Jin-Ho;Lee, Sang-Min;Lee, Ho;Lee, Paul S.;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.12 no.1
    • /
    • pp.39-50
    • /
    • 2001
  • Vanadium based solid solution alloys have been studied as a potential negative electrode of Ni/MH battery due to their high hydrogen storage capacity. In order to improve the kinetic property of V-Ti alloy in KOH electrolyte, the ball-milling process with Ni, which has a catalytic effect of hydrogen absorption/desorption, was carried out to modify the surface properties of V-Ti-Cr alloys with high hydrogen storage capacity. Moreover, to overcome the problem of poor cycle life, V-Ti alloy substituted by Cr, V0.68 Ti0.20 Cr0.12, has been developed showing a good cycle performance (keeping about 80 % of initial discharge capacity after 200 cycles). The cycle life of surface-modified V0.68 Ti0.20 Cr0.12 alloy was improved by suppressing the formation of TiO2 layer on the alloy surface while decreasing the amount of dissolved vanadium in the KOH electrolyte. In order to promote the effect of Ni coating on the surface property of V0.68 Ti 0.20 Cr 0.12 alloy by ball-milling, filamentary-typed Ni, which has higher surface coverage area than sphere-typed Ni was used as a surface modifier. Consequently, the surface-modified V0.68 Ti0.20 Cr0.12 alloy electrode showed a improved discharge capacity of 460 mAh/g.

  • PDF

Design of Nickel Alloys Using the Theoretical Values Calculated from the Electronic State Energies (에너지 전자상태 계산으로 도출된 이론값을 이용한 니켈 합금 설계)

  • Baek, Min-Sook;Kang, Pub-Sung;Baek, Kyeong-Cheol;Kim, Byung-Il;Yoon, Dong-Joo
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.642-646
    • /
    • 2015
  • Super alloys, which can be divided into three categories, i.e. Ni-base, Co-base, and Fe-base alloys, are widely used for high temperature applications. Since superalloys contain many alloying elements and precipitates, their chemistry and processing parameters need to be carefully designed. In this study, we designed a new Ni alloy to prevent corrosion due to water vapor and gases at high temperatures. The new alloy was designed using the theoretical value of the resulting energy electronic state calculation($DV-X{\alpha}$ method). The components that were finally used were Cr, Mo, and Ti, with Ni as a base. For these alloys, elements were selected in order to compare their values with that of the average theoretical basis for an Inconel 625 alloy. Finally, two kinds of Ni alloy were designed: Ni-28Cr-4Mo-2Ti and Ni-20Cr-10Mo-1Ti.

Microstructures and Electrochemical Properties of Si-M (M : Cr, Ni) as Alloy Anode for Li Secondary Batteries (리튬이차전지용 Si-M (M : Cr, Ni) 합금 음극의 미세구조와 전기화학적 특성)

  • Lee, Sung-Hyun;Sung, Jewook;Kim, Sung-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • To compare the microstructure and electrochemical properties between two binary alloys (Cr-Si, Ni-Si), two composition of binary alloys with the same capacity were selected using phase-diagram and prepared by matrix-stabilization method to suppress the volume expansion of Si by inactive-matrix. Master alloys were made by Arc-melting followed by fine structured ribbon sample preparation by Rapid Solidification Process (RSP, Melt-spinning method) under the same conditions. Also powder samples were produced by wet grinding for X-Ray Diffraction (XRD) and electrochemical measurements. As predicted from the phase diagram, only active-Si and inactive-matrix ($CrSi_2$, $NiSi_2$) were detected. The results of Scanning Electron Microscope (SEM) and Transmission Electron Microscopy - Energy Dispersive X-ray Spectroscopy (TEM-EDS) show that Cr-Si alloy has finer microstructure than Ni-Si alloy, which was also predictable through phase diagram. The electrochemical properties related to microstructure were evaluated by coin type full- and half-cells. Separately, self-designed test-cells were used to measure the volume expansion of Si during reaction. Volume expansion of Cr-Si alloy electrode with finer microstructure was suppressed significantly and improved in cycle capability, in comparison Ni-Si alloy with coarse microstructure. From these, we could infer the correlation of microstructure, volume expansion and electrochemical degradation and these properties might be predicted by phase diagram.

Fabrication and Characterization of Ni-Cr Alloy Thin Films for Application to Precision Thin Film Resistors

  • Lee, Boong-Joo;Shin, Paik-Kyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.525-531
    • /
    • 2007
  • Ni(75 wt.%)-Cr(20 wt.%)-Al(3 wt.%)-Mn(4 wt.%)-Si(1 wt.%) alloy thin films were prepared using the DC magnetron sputtering process by varying the sputtering conditions such as power, pressure, substrate temperature, and post-deposition annealing temperature in order to fabricate a precision thin film resistor. For all the thin film resistors, sheet resistance, temperature coefficient of resistance (TCR), and crystallinity were analyzed and the effects of sputtering conditions on their properties were also investigated. The oxygen content and TCR of Ni-Cr-Al-Mn-Si resistors were decreased by increasing the sputtering pressure. Their sheet resistance, TCR, and crystallinity were enhanced by elevating the substrate temperature. In addition, the annealing of the resistor thin films in air at a temperature higher than $300^{\circ}C$ lead to a remarkable rise in their sheet resistance and TCR. This may be attributed to the improved formation of NiO layer on the surface of the resistor thin film at an elevated temperature.

Interfacial Elemental Change When Soldering the Nico-crally and Fe-Cr-Ni Alloy (국소의치금속상과 Fe-Cr계 wire를 soldering 할때 발생한 계면의 성분변화)

  • Cho, Sung-Am;Ko, Hyun-Kwon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.1
    • /
    • pp.49-54
    • /
    • 1989
  • The purpose of this study was to investigate the interfacial elemental change when solding the Ni-Co-Cr dental removable partial denture alloy and Fe-Cr-Ni wrought wire alloy with Ag-Cu-Zu Silver solder, by EDXA, EPMA, to investigate the appropriateness of clinical usefullness for repair the fractured clasps of removable partial dentive. The result of this study was as follows: 1. The Ni element of major component of Ticonium penetrate into the silver solder 2. The movement Age element of silver solder into Fe-Cr-Ni wire was not significant, by EDXA and EPMA.

  • PDF

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF