• Title/Summary/Keyword: Ni-30Cr alloy

Search Result 60, Processing Time 0.02 seconds

Fabrication and Characteristics of Bioceramics for Artificial Dental Crowns (II) Mechanical Characteristics, Color and Color difference (인공치용 바이오 세라믹스의 제조 및 특성(II) 기계적 특성과 색도 및 색차변화)

  • 고영호;한복섭;이준희
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.10
    • /
    • pp.1203-1211
    • /
    • 1995
  • The tests of three point bending and vickers hardness have been carried out to investigate mechanical characteristics of bioceramics for artificial dental crowns. And color and color difference test has been performed to study chromaticity changes after sintering specimens composited with glass and leucite powders. In addition, thermal dilation test has been carried out to examine bonding relations between dental porcelain and metal frame (Ni-Cr alloy). The result of three point bending test showed a maximum strength of about 68 MPa. Thermal expansion coefficient changed from 8.3$\times$10-6/$^{\circ}C$ to 13.5$\times$10-6/$^{\circ}C$ with increasing leucite content (0~30wt.%) in glass matrix. Bonding between porcelain (25% leucite-75% glass) and Ni-Cr alloy was excellent.

  • PDF

A strudyon the improvement of the oxidation resistance for high temperature materials by coating process (코팅에 의한 고온재료의 내산화성 향상을 위한 연구)

  • 강석철;민경안;안연상;김길무
    • Journal of the Korean institute of surface engineering
    • /
    • v.30 no.2
    • /
    • pp.93-103
    • /
    • 1997
  • High temperature materials used in the elevated temperature and corrosive atmosphere must have the good oxidation resistance and preserve their own mechanical properties simultaneously. For the oxidation resistance, it is very important to form a protective oxide scale such as $Al_2O_3$ or $Cr_2O_3$ on the substrate. However, the additions of protective oxide forming elements such as Cr and Al in the alloy to enhance its oxidation resistance are limited due to the deleterious effects on their mechanical properties. PECVD(P1asma Enhanced Chemical Vapor Deposition) coating processes were employed to improve the oxidation resistance at high temperature. Cr and/or A1 were coated on the substrates of Ni and Inconel 600 at various temperatures of 400, 500, $600^{\circ}C$ and at different conditions of specimen surfaces. Then, coated specimens were exposed to isothermal and cyclic oxidation conditions in air at 1000 and $1100^{\circ}C$. In order to enhance the adhesion between the substrate and coated layer, heat treatments of the coated specimens were conducted in a vacuum. At isothermal oxidation experiments, Al-coated Ni specimen showed better oxidation resistance than pure Ni. At cyclic oxidation experiments at $1000^{\circ}C$. Cr and Al-coated specimen showed better oxidation resistance. Cr-coated Inconel 600 had also showed better oxidation resistance due to Cr in the substrate. By PECVD coating process, oxidation resistance could be improved, but it was not improved as expected due to the weakness of the adhesion between the substrate and the coated layer.

  • PDF

The Influence of Bonding Strength and Interface Characteristics to Bonding Agent and Veneer Ceramics on Metal-Ceramic Prosthetics (결합재와 베니어세라믹이 금속-세라믹 보철물의 전단결합강도와 계면특성에 미치는 영향)

  • Kim, Min-Jung;Choi, Sung-Min;Chung, In-Sung
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Purpose: In this study, for the reasons of observing the changes when using bonding agent with Ni-Cr alloy and Co-Cr alloy and using VM13 and Vintage MP ceramic which have the disparity in coefficient of thermal expansion, it is carried out to evaluate the characteristics of the bonding agent through the analysis of the interface between metal and ceramic and the analysis of bond strength by variable. Methods: The surface treatment was performed on the two kinds of alloy(Ni-Cr alloy and Co-Cr alloy) specimens, which were sandblasted and were treated with bonder application. The metal-ceramic interfaces were analyzed with EPMA in order to ionic diffusion, and the shear test was performed. Results: As a result of observation of metal-ceramic interfacial properties, it was observed that Cr atoms were spread from the alloy body to the ceramic floor in the specimen of Group B. It was also seen that Cr, W atoms were spread from the alloy body to the ceramic floor in the specimen of Group S. In consequence of observing Shear bond strength, it was calculated that the specimen of BSV was 27.75(${\pm}11.21$)MPa, BSM was 27.02(${\pm}5.23$)MPa, BCV was 30.20(${\pm}5.99$)MPa, BCM was 27.94(${\pm}10.76$)MPa, SSV was 20.83(${\pm}2.58$)MPa, SSM was 23.98(${\pm}3.94$)MPa, SCV was 32.32(${\pm}4.68$)MPa, and SCM was 34.54(${\pm}10.63$)MPa. Conclusion: In the metal-ceramic interface of Bellabond plus sample group, diffusion of Cr atoms was incurred and diffusion of C Cr atoms and W atoms in the sample group of $Starloy{(R)}\;C$ was observed. Using bonding agent showed the higher bond strength than using the sand blasting treatment. In the Bellabond plus alloys, the specimen group with the use of binding materials showed higher shear bond strength, but didn't show statistically significant differences (p>0.05). In the $Starloy{(R)}\;C$ alloys, the specimen group with the use of binding materials showed higher shear bond strength and statistically significant differences(p<0.05). In terms of VM13 ceramic, it was in the Bellabond plus alloys that the high shear bond strength was showed, but there's no statistically significant differences(p>0.05). In terms of Vintage MP ceramic, it was in the $Starloy{(R)}\;C$ alloys that the high shear bond strength was showed and statistically significant differences(p<0.05). Metal-ceramic to fracture of the shear strength measurements and an analysis of all aspects of military usage fracture of the composite, respectively.

A Study on Improvement of Metal-Ceramic Bonding Strength by Addition of Aluminum to Casting Metal Alloy (도재주조용 합금에 있어서 알루미륨 첨가에 따른 metal-ceramic과의 결합력 증진에 관한 연구)

  • Lee, Jae-Won;Min, Byong-Kuk;Han, Min-Soo
    • Journal of Technologic Dentistry
    • /
    • v.23 no.2
    • /
    • pp.161-170
    • /
    • 2002
  • The Purpose of this study was to investigate the chemically improvement of metal-ceramics bond strength in the course of recasting Ni-Cr metal composite system with 10wt.%, 20wt.% and 30wt.% aluminum respectively. We have tested the bond strength, micro-structure, chemical composition of each metal composites and metal- ceramic bond interfaces by 3-point bending strength tester, SEM and EDS. We have made the conclusions through this study as follow: 1. The most suitable amount of aluminum to the Ni-Cr metal composite recasting is 20wt. % for improving metal-ceramics bond strength with debonding strength value of 49.54 kgf/mm2. 2. The aluminum must be changed to small spread alumina like phases and second aluminum-metal composites phases in the morphology of Ni-Cr metal composite system by adding during it's casting. These second phases have inclined functional oxide phases mixed with metal elements and they must take roll to improvement of metal-ceramics bond strength. 3. In the case of 30wt.% aluminum appended to Ni-Cr metal composite system, an excess of second inclined functional oxide phases produce cracks and spalling of them apart from it's base material. It must be a important factor of reduction of metal-ceramics bond strength.

  • PDF

Effect of Crystallization Treatment on the Magnetic Properties of Amorphous Strips Based on Co-Fe-Ni-B-Si-Cr Containing Nitrogen

  • Cho H.J.;Kwon H.T.;Ryu H.H.;Sohn K.Y.;You B.S.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.285-289
    • /
    • 2006
  • Co-Fe-Ni-B-Si-Cr based amorphous strips containing nitrogen were manufactured via melt spinning, and then devitrified by crystallization treatment at the various annealing temperatures of $300^{\circ}C{\sim}540^{\circ}C$ for up to 30 minutes in an inert gas $(N_2)$ atmosphere. The microstructures were examined by using XRD and TEM and the magnetic properties were measured by using VSM and B-H meter. Among the alloys, the amorphous ribbons of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ containing 121 ppm of nitrogen showed relatively high saturation magnetization. The alloy ribbons crystallized at $540^{\circ}C$ showed that the grain size of $Co_{72.6}Fe_{9.8}Ni_{5.5}B_{2.4}Si_{7.1}Cr_{2.6}$ alloy containing 121 ppm of nitrogen was about f nm, which exhibited paramagnetic behavior. The formation of nano-grain structure was attributed to the finely dispersed Fe4N particles and the solid-solutionized nitrogen atoms in the matrix. Accordingly, it can be concluded that the nano-grain structure of 5nm in size could reduce the core loss within the normally applied magnetic field of 300A/m at 10kHz.

Investigation of Steam Generator Tube Stress Corrosion Cracking Induced by Lead (납에 의한 증기발생기 전열관 응력부식균열 평가)

  • Kim, Dong-Jin;Hwang, Seong Sik;Kim, Joung Soo;Kim, Hong Pyo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.5 no.2
    • /
    • pp.1-6
    • /
    • 2009
  • Nuclear power plants (NPP) using Alloy 600 (Ni 75wt%, Cr 15wt%, Fe 10wt%) as a heat exchanger tube of the steam generator (SG) have experienced various corrosion problems by ageing such as pitting, intergranular attack (IGA) and stress corrosion cracking (SCC). In spite of much effort to reduce the material degradations, SCC is still one of important problems to overcome. Especially lead is known to be one of the most deleterious species in the secondary system that cause SCC of the alloy. Even Alloy 690 (Ni 60wt%, Cr 30wt%, Fe 10wt%) as an alternative of Alloy 600 because of outstanding superiority to SCC is also susceptible to leaded environment. An oxide on SG tubing materials such as Alloy 600 and Alloy 690 is formed and modified expanding to complex sludge throughout hideout return (HOR) of various impurities including Pb. Oxide formation and breakdown is requisite for SCC initiation and propagation. Therefore it is expected that an oxide property such as a passivity of an oxide formed on steam generator tubing materials is deeply related to PbSCC and an inhibitor to hinder oxide modification by lead efficiently can be found. In the present work, the SCC susceptibility obtained by using a slow strain rate test (SSRT) in aqueous solutions with and without lead was discussed in view of the oxide property. The oxides formed on Alloy 600 and Alloy 690 in aqueous solutions with and without lead were examined by using a transmission electron microscopy (TEM), an energy dispersive x-ray spectroscopy (EDXS), an x-ray photoelectron spectroscopy (XPS) and an electrochemical impedance spectroscopy (EIS).

  • PDF

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

DEVELOPMENT OF TITANIUM-BASED BRAZING FILLER METALS WITH LOW-MELTING-POING

  • Onzawa, Tadao;Tiyama, Takashi
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.539-544
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature (about 1000 C) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at 900 C or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point 825 C) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: 825 C) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of 820 C or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

Development of Titanium-based Brazing Filler Metals with Low-melting-point

  • Onzawa, T.;Iiyama, T.
    • International Journal of Korean Welding Society
    • /
    • v.2 no.2
    • /
    • pp.14-18
    • /
    • 2002
  • Titanium and titanium alloy are excellent in corrosion resistance and specific intensity, and also in the biocompatibility. On the other hand, the brazing is bonding method of which productivity and reliability are high, when the complicated and precise structure of the thin plate is constructed. However, though conventional titanium-based brazing filler metal was excellent in bond strength and corrosion resistance, it was disadvantageous that metal structure and mechanical property of the base metal deteriorated, since the brazing temperature ( about $1000^{\circ}C$ ) is considerably high. Authors developed new brazing filler metal which added Zr to Ti-Cu (-Ni) alloy which can be brazed at $900^{\circ}C$ or less about 15 years ago. In this paper, the development of more low-melting-point brazing filler metal was tried by the addition of the fourth elements such as Ni, Co, Cr for the Ti-Zr-Cu alloy. As a method for finding the low-melting-point composition, eutectic composition exploration method was used in order to reduce the experiment point. As the result, several kinds of new brazing filler metal such as 37.5Ti-37.5-Zr-25Cu alloy (melting point: $825^{\circ}C$) and 30Ti-43Zr-25Cu-2Cr alloy (melting point: $825^{\circ}C$) was developed. Then, the brazing joint showed the characteristics which were almost equal to the base metal from the result of obtaining metallic structure and strength of joint of brazing joint. However, the brazing filler metal composition of the melting point of $820^{\circ}C$ or less could not be found. Consequentially, it was clarified that the brazing filler metal developed in this study could be practically sufficiently used from results such as metal structure of brazing joint and tensile test of the joint.

  • PDF

EFFECTS OF ELECTROLYTE CONCENTRATION AND ETCHING TIME ON SURFACE ROUGHNESS OF NI-CR-BE ALLOY (전해질 농도와 식각시간에 따른 비귀금속합금의 표면조도 변화)

  • Heo, Jae-Woong;Jeon, Young-Chan;Jeong, Chang-Mo;Lim, Chang-Sub
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.178-190
    • /
    • 2000
  • The purpose of this study was to evaluate the surface roughness of Ni-Cr-Be alloy($Verabond^{(R)}$, Aalba Dent Inc., USA) according to electrolyte concentration and etching time. Total of 150 metal specimens ($12{\times}10{\times}1.5mm$) composed of 5 polisded specimens, 5 sandblasted specimens, 140 etched specimens were prepared. Etched groups were divided into 28 groups by the $HClO_4$ concentrations(10, 30, 50, 70%) and etching times(15, 30, 60, 120, 180, 240, 300 seconds). The mean surface roughness(Ra) and the etching depth were measured with Optical 3-dimensional surface roughness measuring machine(Accura 1500M, Intek Engineering Co., Korea) and observed under SEM. The results obtaind were as follows: 1. Surface roughness(Ra) and etching depth were affected by the order of etching time, electrolyte concentration, and their interaction(P<0.05). 2. Surface roughness(Ra) and etching depth were increased with etching time in 10%, 30% electrolyte concentrations, but they had no significant difference with etching time in 70% (P<0.05). 3. Surface roughness(Ra) and etching depth decreased in the order of 30, 10, 50, 70% electrolyte concentrations from 120 seconds etching time(P<0.05). 4. The remarkable morphologic changes in etched surface were observed along the grain boundaries in 15, 30 seconds of 10%, 30% concentrations and the morphologic changes could be denoted in the grains themselves as well as along the boundaries with the lapse of time. Even though the noticeable morphologic changes also took place in etched surface with 50% concentration, the degree of changes were less than that of changes with 10%, 30%. However, there were little morphologic changes with 70% concentration regardless of etching time. 5. Surface roughness(Ra) of sandblasting group with $50{\mu}m\;Al_2O_3$ had no significant difference with 30%-30 seconds etched group(P<0.05).

  • PDF