• Title/Summary/Keyword: Ni two-step reaction

Search Result 25, Processing Time 0.022 seconds

Radiation damage to Ni-based alloys in Wolsong CANDU reactor environments

  • Kwon, Junhyun;Jin, Hyung-Ha;Lee, Gyeong-Geun;Park, Dong-Hwan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.915-921
    • /
    • 2019
  • Radiation damage due to neutrons has been calculated in Ni-based alloys in Wolsong CANDU reactor environments. Two damage parameters are considered: displacement damage, and transmutation gas production. We used the SPECTER and SRIM computer codes in quantifying radiation damage. In addition, damage caused by Ni two-step reactions was considered. Estimations were made for the annulus spacers in a CANDU reactor that are located axially along a fuel channel and made of Inconel X-750. The calculation results indicate that the transmutation gas production from the Ni two-step reactions is predominant as the effective full power year increases. The displacement damage due to recoil atoms produced from Ni two-step reactions accounts for over 30% out of the total displacement damage.

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Studies on the Synthesis of N-alkyl-N-acyl glucamines (N-alkyl-N-acyl glucamines의 합성에 관한 연구)

  • Ahn, Ho-Jeong;Cho, Kyu-Suk
    • Applied Chemistry for Engineering
    • /
    • v.7 no.1
    • /
    • pp.171-176
    • /
    • 1996
  • The easily biodegradable nonionic surfactant of glucamide(N-alkyl-N-acyl glucamine) was synthesized by the two-step reaction. The first step was the amination between alkylamine and glucose in methanol. Then, alkyl glucamines were obtained by reduction using Ni catalyst under the high pressure with 86~93% of reaction yield. The second step was the synthesis of glucamide from alkyl glucamine and fatty acid methyl ester in methanol under the alkali catalytic condition while refluxing the solvent. The reaction yield of this step was 84~95% except the benzyl glucamine, which the reaction yield was 50~70%. The molecular structure of four kinds of alkyl glucamine and 16 kinds of glucamide with different alkyl and acyl groups was studied by IR, MS and NMR.

  • PDF

A Study on Pill Temperature Control method and Hydrogen Production with 2-step Thermochemical Cycle Using Dish Type Solar Thermal System (접시형 태양열 시스템을 이용한 2단계 열화학 싸이클의 수소 생산과 PID 온도 제어 기법 연구)

  • Kim, Chul-Sook;Kim, Dong-Yeon;Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.42-50
    • /
    • 2013
  • Solar thermal reactor was studied for hydrogen production with a two step thermochemical cycle including T-R(Thermal Reduction) step and W-D(Water Decomposition) step. NiFe2O4 and Fe3O4 supported by monoclinic ZrO2 were used as a catalyst device and Ni powder was used for decreasing the T-R step reaction temperature. Maintaining a temperature level of about $1100^{\circ}C$ and $1400^{\circ}C$, for 2-step thermochemical reaction, is important for obtaining maximum performance of hydrogen production. The controller was designed for adjusting high temperature solar thermal energy heating the foam-device coated with nickel- ferrite powder. A Pill temperature control system was designed based on 2-step thermochemical reaction experiment data(measured concentrated solar radiation and the temperature of foam device during experiment). The cycle repeated 5 times, ferrite conversion rate are 4.49~29.97% and hydrogen production rate is 0.19~1.54mmol/g-ferrite. A temperature controller was designed for increasing the number of reaction cycles related with the amount of produced hydrogen.

Binder-Free Synthesis of NiCo2S4 Nanowires Grown on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction

  • Patil, Komal;Babar, Pravin;Kim, Jin Hyeok
    • Korean Journal of Materials Research
    • /
    • v.30 no.5
    • /
    • pp.217-222
    • /
    • 2020
  • The design and fabrication of catalysts with low-cost and high electrocatalytic activity for the oxygen evolution reaction (OER) have remained challenging because of the sluggish kinetics of this reaction. The key to the pursuit of efficient electrocatalysts is to design them with high surface area and more active sites. In this work, we have successfully synthesized a highly stable and active NiCo2S4 nanowire array on a Ni-foam substrate (NiCo2S4 NW/NF) via a two-step hydrothermal synthesis approach. This NiCo2S4 NW/NF exhibits overpotential as low as 275 mV, delivering a current density of 20 mA cm-2 (versus reversible hydrogen electrode) with a low Tafel slope of 89 mV dec-1 and superior long-term stability for 20 h in 1 M KOH electrolyte. The outstanding performance is ascribed to the inherent activity of the binder-free deposited, vertically aligned nanowire structure, which provides a large number of electrochemically active surface sites, accelerating electron transfer, and simultaneously enhancing the diffusion of electrolyte.

A Study on Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle by Heat Recovery (열회수에 따른 고온 태양열 열화학 싸이클의 수소 생산에 관한 연구)

  • Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.2
    • /
    • pp.13-22
    • /
    • 2017
  • Two-step water splitting thermochemical cycle with $CeO_2/ZrO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2/ZrO_2$ foam device depending on heat recovery of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2/ZrO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. Resultantly, the quantity of hydrogen generation increased by 52.02% when the carrier gas of Thermal-Reduction step is preheated to $200^{\circ}C$ and, when the $N_2/steam$ is preheated to $200^{\circ}C$ in the Water-Decomposition step, the quantity of hydrogen generation increased by 35.85%. Therefore, it is important to retrieve the heat from the highly heated gases discharged from each of the reaction spaces in order to increase the reaction temperature of each of the stages and thereby increasing the quantity of hydrogen generated through this.

Two-Step Thermochemical Cycle with Supported $NiFe_2O_4$ for Hydrogen Production (지지체의 변화에 따른 Ni-페라이트의 2단계 열화학 사이클 반응 특성에 관한 연구)

  • Kim, Woo-Jin;Kang, Kyoung-Soo;Kim, Chang-Hee;Choi, Won-Chul;Kang, Yong;Park, Chu-Sik
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.6
    • /
    • pp.505-513
    • /
    • 2008
  • The two-step thermochemical cycle was examined on the $CeO_2$, YSZ, and $ZrO_2$-supported $NiFe_2O_4$ to investigate the effects of support material addition. The supported $NiFe_2O_4$ was prepared by the aerial oxidation method. Thermal reduction was conducted at 1573K and 1523K while water-splitting was carried out at 1073K. Supporting $NiFe_2O_4$ on $CeO_2$, YSZ and $ZrO_2$ alleviated the high-temperature sintering of iron-oxide. As a result, the supported $NiFe_2O_4$ exhibited greater reactivity and repeatability in the water-splitting cycle as compared to the unsupported $NiFe_2O_4$. Especially, $ZrO_2$-supported $NiFe_2O_4$ showed better sintering inhibition effect than other supporting materials, but hydrogen production amount was decreased as cycle repeated. In case of $CeO_2$-supported $NiFe_2O_4$, improvement of hydrogen production was found when the thermal reduction was conducted at 1573K. It was deduced that redox reaction of $CeO_2$ activated above 1573K.

The Properties of the Several Metal Oxides in the Water-splitting for H2 Production (물 분해 수소제조를 위한 금속산화물들의 반응특성)

  • Son, Hyun-Myung;Park, Chu-Sik;Lee, Sang-Ho;Hwang, Gab-Jin;Kim, Jong-Won;Lee, Jin-Bae
    • Journal of Hydrogen and New Energy
    • /
    • v.14 no.3
    • /
    • pp.268-275
    • /
    • 2003
  • The water-splitting process by the metal oxides using solar heat is one of the hydrogen production method. The hydrogen production process using the metal oxides (NiFe2O4/NiAl2O4,CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite) was carried out by two steps. The first step was carried out by the CH4-reduction to increase activation of metal oxides at operation temperature. And then, it was carried out the water-splitting reaction using the water at operation temperature for the second step. Hydrogen was produced in this step. The production rates of H2 were 110, 160, 72, 29, 17, $21m{\ell}/hr{\cdot}g-_{Metal\;Oxide}$ for NiFe2O4/NiAl2O4, CoFe2O4/CoAl2O4, CoMnNiFerrite, CoMnSnFerrite, CoMnZnFerrite, CoSnZnFerrite respectively in the second step. CoFe2O4/CoAl2O4 had higher H2 production rate than the other metal oxides.

Two-step thermochemical cycles for hydrogen production using NiFe2O4/m-ZrO2 and CeO2 devices (NiFe2O4/m-ZrO2와 CeO2를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Kim, Chul-Sook;Cho, Ji-Hyun;Kim, Dong-Yeon;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.93-100
    • /
    • 2013
  • Two-step thermochemical cycle using ferrite-oxide($Fe_2O_4$) device was investigated. The $H_2O$(g) was converted into $H_2$ in the first experiment which was performed using a dish type solar thermal system. However the experiment was lasted only for 2 cycles because the metal oxide device was sintered and broken down. Another problem was that the reaction was taken place mainly on a side of the metal oxide device. The m-$ZrO_2$, which was widely known as a material preventing sintering, was applied on the metal oxide device. The ferrite loading rate and the thickness of the metal oxide device were increased from 10.67wt% to 20wt% and from 10mm to 15mm, respectively. The chemical reactor having two inlets was designed in order to supply the reactants uniformly to the metal oxide device. The second-experiment was lasted for 5 cycles, which was for 6 hours. The total amount of the $H_2$ production was 861.30ml. And cerium oxide($CeO_2$) device was used for increasing $H_2$ production rate. $CeO_2$ device had low thermal resistance, however, more $H_2$ production rate than $Fe_2O_4$ device.

Electrochemical Study of a Single Particle of Active Material for Secondary Battery using the Microelectrode (마이크로 전극에 의한 2차 전지용 활물질 단일 입자의 전기화학적 평가)

  • Kim Ho-Sung;Lee Choong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.9 no.2
    • /
    • pp.95-99
    • /
    • 2006
  • Electrochemical properties were studied for a single particle of active material of hydrogen storage alloy $(MmNi_{3.55}Co_{0.75}Mn_{0.4}Al_{0.3})$ and nickel hydroxides $(NiOH)_2$ for the secondary Nickel Metal Hydride (Ni-MH) batteries using the microelectrode, which was manipulated to make electrical contact with an active material particle for cyclic voltammograms (CV) and potential-step experiments. As a result of CV test, it was found that three kinds of hydrogen oxidation peaks at -0.9, -0.75 and -0.65 V and hydrogen evolution peak at -0.98 V for hydrogen storage alloy were separately observed and two kinds of peaks of proton oxidation/reduction at 0.45 and 0.32 V and oxygen evolution reaction (OER) at 0.6 V for nickel hydroxides were also more clearly observed. Furthermore hydrogen diffusion coefficient within a single particle was also found to vary the order between $10^{-9}\;and\;10^{-10}cm^2/s$ over the course of hydrogenation and dehydrogenation process for potential-step experiments.