• Title/Summary/Keyword: Ni trends

Search Result 63, Processing Time 0.026 seconds

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Stability Constants of First-row Transition Metal and Trivalent Lanthanide Metal Ion Complexes with Macrocyclic Tetraazatetraacetic and Tetraazatetramethylacetic Acids

  • 홍춘표;김동원;최기영;김창태;최용규
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.297-300
    • /
    • 1999
  • The protonation constants of the macrocyclic ligands, 1,4-dioxa-7,10,13,16-tetraaza-cyclooctadecane-N,N',N",N"'-tetra(acetic acid) [N-ac4[18]aneN402] and 1,4-dioxa-7,10,13,16-tetraazacyclooctadecane-1,4-dioxa-7,10,13,16-N,N',N",N"'-tetra(methylacetic acid) [N-meac4[18]aneN4O2] have been determined by using potentiometric method. The protonation constants of the N-ac4[18]aneN4O2 were 9.31 for logK1H, 8.94 for logK2H, 7.82 for logK3H, 4.48 for logK4H and 2.94 for logK5H. And the protonation constants of the N-meac4[18]aneN4O2 were 9.34 for logK1H, 9.13 for logK2H, 8.05 for logK3H, 5.86 for logK4H, and 3.55 for logK5H. The stability constants of complexes on the divalent transition ions (Co2+, Ni2+, Cu2+, and Zn2+) and tiivalent metal ions (Ce3+, Eu3+, Gd3+, and Yb3+) with ligands N-ac4[18]-aneN4O2 and N-meac4[18]aneN4O2 have been obtained from the potentiometric data with the aid of the BEST program. The three higher values of the protonation constants for synthesized macrocyclic ligands correspond to the protonation of nitrogen atoms, and the fourth and fifth values correspond to the protonation of the carboxylate groups for the N-ac4[18]aneN4O2 and N-meac4[18]aneN4O2. The meatal ion affinities of the two tetra-azamacrocyclic ligands with four pendant acetate donor groups or methylacetate donor groups are compared. The effects of the metal ions on the stabilities are discussed, and the trends in stability constants resulting from changing the macrocyclic ring with pendant donor groups and acidity of the metal ions.

Nanomaterials Research Using Quantum Beam Technology

  • Kishimoto, Naoki;Kitazawa, Hideaki;Takeda, Yoshihiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.7-7
    • /
    • 2011
  • Quantum beam technology has been expected to develop breakthroughs for nanotechnology during the third basic plan of science and technology (2006~2010). Recently, Green- or Life Innovations has taken over the national interests in the fourth basic science and technology plan (2011~2015). The NIMS (National Institute for Materials Science) has been conducting the corresponding mid-term research plans, as well as other national projects, such as nano-Green project (Global Research for Environment and Energy based on Nanomaterials science). In this lecture, the research trends in Japan and NIMS are firstly reviewed, and the typical achievements are highlighted over key nanotechnology fields. As one of the key nanotechnologies, the quantum beam research in NIMS focused on synchrotron radiation, neutron beams and ion/atom beams, having complementary attributes. The facilities used are SPring-8, nuclear reactor JRR-3, pulsed neutron source J-PARC and ion-laser-combined beams as well as excited atomic beams. Materials studied are typically fuel cell materials, superconducting/magnetic/multi-ferroic materials, quasicrystals, thermoelectric materials, precipitation-hardened steels, nanoparticle-dispersed materials. Here, we introduce a few topics of neutron scattering and ion beam nanofabrication. For neutron powder diffraction, the NIMS has developed multi-purpose pattern fitting software, post RIETAN2000. An ionic conductor, doped Pr2NiO4, which is a candidate for fuel-cell material, was analyzed by neutron powder diffraction with the software developed. The nuclear-density distribution derived revealed the two-dimensional network of the diffusion paths of oxygen ions at high temperatures. Using the high sensitivity of neutron beams for light elements, hydrogen states in a precipitation-strengthened steel were successfully evaluated. The small-angle neutron scattering (SANS) demonstrated the sensitive detection of hydrogen atoms trapped at the interfaces of nano-sized NbC. This result provides evidence for hydrogen embrittlement due to trapped hydrogen at precipitates. The ion beam technology can give novel functionality on a nano-scale and is targeting applications in plasmonics, ultra-fast optical communications, high-density recording and bio-patterning. The technologies developed are an ion-and-laser combined irradiation method for spatial control of nanoparticles, and a nano-masked ion irradiation method for patterning. Furthermore, we succeeded in implanting a wide-area nanopattern using nano-masks of anodic porous alumina. The patterning of ion implantation will be further applied for controlling protein adhesivity of biopolymers. It has thus been demonstrated that the quantum beam-based nanotechnology will lead the innovations both for nano-characterization and nano-fabrication.

  • PDF

Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques

  • Liu, Xiao-Zhou;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.687-694
    • /
    • 2018
  • The problem of wheel tread defects has become a major challenge for the health management of high-speed rail as a wheel defect with small radius deviation may suffice to give rise to severe damage on both the train bogie components and the track structure when a train runs at high speeds. It is thus highly desirable to detect the defects soon after their occurrences and then conduct wheel turning for the defective wheelsets. Online wheel condition monitoring using wheel impact load detector (WILD) can be an effective solution, since it can assess the wheel condition and detect potential defects during train passage. This study aims to develop an FBG-based track-side wheel condition monitoring method for the detection of wheel tread defects. The track-side sensing system uses two FBG strain gauge arrays mounted on the rail foot, measuring the dynamic strains of the paired rails excited by passing wheelsets. Each FBG array has a length of about 3 m, slightly longer than the wheel circumference to ensure a full coverage for the detection of any potential defect on the tread. A defect detection algorithm is developed for using the online-monitored rail responses to identify the potential wheel tread defects. This algorithm consists of three steps: 1) strain data pre-processing by using a data smoothing technique to remove the trends; 2) diagnosis of novel responses by outlier analysis for the normalized data; and 3) local defect identification by a refined analysis on the novel responses extracted in Step 2. To verify the proposed method, a field test was conducted using a test train incorporating defective wheels. The train ran at different speeds on an instrumented track with the purpose of wheel condition monitoring. By using the proposed method to process the monitoring data, all the defects were identified and the results agreed well with those from the static inspection of the wheelsets in the depot. A comparison is also drawn for the detection accuracy under different running speeds of the test train, and the results show that the proposed method can achieve a satisfactory accuracy in wheel defect detection when the train runs at a speed higher than 30 kph. Some minor defects with a depth of 0.05 mm~0.06 mm are also successfully detected.

Global Environmental Changes and the Antarctic (지구환경변화와 남극)

  • Lee, Bang-Yong;Chung, Ho-Sung;Kang, Sung-Ho;Chang, Soon-Keun
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.216-233
    • /
    • 2003
  • This study delineates the phenomena related with global environmental changes such as global warming, ozone depletion, and El Ni${\tilde{n}}$o/Southern Oscillation (ENSO) noted in the Antarctic. Retreat of ice cliffs, glaciers, and calving of ice shelves indicate the effects of recently aggravated global warming. The ice cliff located at Marian Cove, King George Island, South Shetland Islands off the Antarctic Peninsula has been observed to be retreating faster in the last 7 years than in the previous 38 years since 1956. There are some indications of temperature and precipitation changes associated with ENSO around King Sejong Station. The regression analyses indicate significant trends such as a decrease in the total amount of ozone and an increase in ultraviolet radiation which was seen by a satellite (TOMS-EUV) in September and October which correspond to ozone-hole season over King Sejong Station. Increase of UV radiation due to the ozone depletion in the Antarctic has changed the growth rate of marine organisms. It may also result in changes to the productivity, biomass, and species composition of marine organisms which can affect the whole marine ecosystem. The recent ice-core drilling over Lake Vostok has been reviewed with emphasis on the four cycles of glacial stages over the past 420,000 years. It is time to show more interest in mainland Antarctica through investigations of the coring and vast ice sheet, terrestrial geology, and upper atmospheric sciences in order to understand the past environmental changes and to predict possible changes to the environment in the future.

Variability of Satellite-derived Chlorophyll-a Concentration in Relation to Indian Ocean Dipole (IOD) Variation (인도양 쌍극진동 변동에 따른 위성에서 추정된 표층 클로로필-a 농도 변화 연구)

  • Son, Young Baek;Kim, Suk Hyun;Kim, Sang-Hyun;Rho, TaeKeun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.917-930
    • /
    • 2017
  • To understand the temporal and spatial variations of surface chlorophyll-a concentration (Chl-a) distribution in the Indian Ocean ($30^{\circ}E{\sim}120^{\circ}E$, $30^{\circ}S{\sim}30^{\circ}N$) by the Indian Ocean Dipole (IOD), we conducted EOF and K means analyses of monthly satellite-derived Chl-a data in the region during 1998~2016 periods. Chl-a showed low values in the central region of the Indian Ocean and relatively high values in the upwelling region and around the marginal regions of the Indian Ocean. It also had a strong seasonal variation of Chl-a, showing the lowest value in the spring and the highest value in summer due to the change of the monsoon and current system. The EOF analysis showed that Chl-a variation in EOF mode 1 is related to ENSO (El $Ni{\tilde{n}}o$/Southern Oscillation) and that of mode 2 is linked to IOD. Both modes explained spatially opposite trends of Chl-a in the east and west Indian Ocean. From K means analysis, the Chl-a variation in the east and west Indian Ocean, and around India have relatively good relationship with IOD while that in the tropical and middle Indian Ocean closely associated with ENSO. The spatial and temporal distribution of Chl-a also showed distinct spatial and temporal variations depend on the different types of IOD events. IOD classifies two patterns, which occurred during the developing ENSO (First Type IOD) and the year following ENSO event (Second Type IOD). Chl-a variation in the First Type IOD started in summer and peaked in fall around the east and west Indian Ocean. Chl-a variation in the Second Type IOD occurred started in spring, peaked in summer and fall, and disappeared in winter. In the Chl-a variation related to IOD, developing process appearing in the Chl-a difference between the east and west Indian ocean was similar. Chl-a variation in the northern Indian Ocean were opposite trend with changing developing phase of IOD.

Geochemical Characteristics of the Uljin Granitoids in Northeastern Part of the Yeongnam Massif, Korea (영남육괴 북동부 울진지역 화강암류의 지화학적 특성)

  • Wee, SooMeen;Kim, Ji-Young;Lim, Sung-Man
    • Journal of the Korean earth science society
    • /
    • v.34 no.4
    • /
    • pp.313-328
    • /
    • 2013
  • Jurassic granitoids in the northeastern part of the Yeongnam Massif are possibly the result of intensive magmatic activities that occurred in response to subduction of the proto-Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical studies on the granitic rocks are carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the Uljin granitoids in the northeastern part of the Yeongnam Massif indicate that all of the rocks have the characteristics of calcalkaline series in subalkaline field. The overall major element trends show systematic variations in each granitic body, but the source materials of each granitoids seem to have different chemical composition. The Uljin granitoids are different from other granitic rocks, which distributed vicinity of the study area, in the contents of $Al_2O_3$ and trace elements such as Cr, Co, Ni, Sr, Y and Nb. The Uljin granitoids have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but they have low Y and Yb contents. The major ($SiO_2$, $Al_2O_3$, MgO) and trace element (Sr, Y, La, Yb) contents of the Uljin granitoids fall well within the adakitic field. The Uljin granitoids have similar geochemical characteristics, paleotectonic environments and intrusion ages to those of the Yatsuo plutonic rocks of Hida belt located on northwestern part of Japan. Chondrite normalized REE patterns show generally enriched LREEs ($(La/Yb)_{CN}=10.6-103.4$) and are slight negative to flat Eu anomalies. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at the continental margin during the subduction of Izanagi plate in Jurassic period.

Physio-Chemical Characteristics of Soil, Stream Sediment and Soil Water Contaminated by the Abandoned Coal Mine in Keumsan, Chungnam (충남(忠南) 금산(錦山) 폐탄광지역(廢炭鑛地域)의 토양(土壤), 하상퇴적물(河床堆積物) 및 토양수(土壤水)의 이화학적(理化學的) 특성(特性))

  • Min, Ell Sik;Kim, Myung Hee;Song, Suckhwan
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.3
    • /
    • pp.324-333
    • /
    • 1997
  • The research has been made for the effects of the pollution by the abandoned coal mine drainage on the physical and chemical properties of soil, stream sediment and soil water. The soils overspreaded by the abandoned coal don't develop solum and the bulk density is $1.83g/m^3$, compared with $1.14-1.38g/m^3$ in the other forest soils. The soil pH range in coal bearing region ie, from 4.01 to 4.11 and non-coal bearing soil range is from 5.03 to 5.13. Heavy metals such as As, Cr, Ni, Mo and Ba of coal bearing soils and polluted stream sediments have larger concentration than those of non-coal content and non-polluted. Especially As and Mo concentrations are largely high in coal bearing. The relative ratios $K_2O/Na_2O$ of geochemical elements are higher in coal bearing soil and polluted stream sediments than those of non-coal bearing soils and non-polluted stream sediments as well as black shales of the Changri Formation. However, $MgO+Fe_2O_3+TiO_2/CaO+K_2O$ are the opposite trends, so that the ratios are lower in the polluted regions. The soil water pHs in the polluted regions are the strong acid(pH3.4-4.2) and buffer capacity of the polluted soil is low because canons such as $Na^+$, $K^+$, $Mg^{+2}$are leached by the acidification.

  • PDF

Petrology of the Tertiary Basaltic Rocks in the Yeonil and Eoil Basins, Southeastern Korea (한반도 동남부 제3기 연일, 어일분지에 나타나는 현무암질암의 암석학적 연구)

  • Shim, Sung-Ho;Park, Byeong-Jun;Kim, Tae-Hyeong;Jang, Yun-Deuk;Kim, Jung-Hoon;Kim, Jeong-Jin
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • Eoil basalt in the Eoil basin and Yeonil basalt and its related volcanic rocks in Guryongpo and Daebo area were researched and analyzed to purse the tectonic settings and magma characteristics of those Tertiary volcanic rocks in the south-east Korean peninsula. It is highly suggested that zoning, resorption and sieve texture in plagioclase and reaction rim in pyroxene indicate unstable tectonic environments and complex volcanism in the study area. Volcanic rocks from Janggi basin are identified as basalt and basaltic andesite in TAS diagram and sub-alkaline series in terms of magma differentiation. $Na_2O$ and $K_2O$ show positive trend however FeO, CaO, MgO and $P_2O_5$ indicate negative trend in Harker variation diagram with $SiO_2$. Basaltic rocks from Eoil area are identified as calc-alkaline series in AFM diagram and show medium K series calc-alkaline in $K_2O-SiO_2$ diagram. Compatible trace elements of Co, Ni, V, Zn, and Sc in Yeonil basalt show negative trend with crystallization but incompatible trace element of Ba, Rb show positive trend with $SiO_2$ 0.81~1.00 of $Eu/Eu^*$ value suggests minor effect of plagioclase fractionation in Yeonil basaltic rocks. Plagioclase composition of Eoil basalt ranges from $An_{63.46-98.38}\;Ab_{1.62-32.96}\;Or_{0-3.58}$ (anorthite-labradorite) in core to $An_{40.89-82.44}\;Ab_{17.10-46.43}\;Or_{0-12.68}$ (bytownite-labradorite) in rim. $^{87}Sr/^{86}Sr$ and 143Nd;t44Nd ranges 0.704090~0.704717 and 0.512705~0.512822 respectively. Negative linear trends in 87Sr/86Sr and $^{143}Nd/^{144}Nd$ correlation diagram indicate that magma produced Yeonil basalt and basaltic andesite has been originated as partial melting product of mantle wedge by subducting Pacific plate affected by oceanic crust with less effect of continental crust indicating calc-alkaline magma characteristics.

Geochemistry and Petrogenesis of Adakitic Granitoids from Bognae Area in the Southwestern Part of the Yeongnam Massif, Korea (영남육괴 남서부 복내지역에 분포하는 아다카이트질 화강암체의 성인 및 지화학적 특성)

  • Wee, Soo-Meen;Park, Jae-Yong
    • Journal of the Korean earth science society
    • /
    • v.30 no.4
    • /
    • pp.427-443
    • /
    • 2009
  • Cretaceous intrusive and extrusive rocks in the southwestern part of the Yeongnam Massif are possibly the result of intensive magmatism which occurred in response to subduction of the Pacific plate beneath the northeast portion of the Eurasian plate. Geochemical and petrological study on the granitic rocks were carried out in order to constrain the petrogenesis of the granitic magma and to establish the paleotectonic environment of the area. Whole rock chemical data of the granitic rocks from the study area indicate that all the rocks have characteristics of calc-alkaline series in the subalkaline field. The overall geochemical features show systematic variations in each granitic body, but the source materials of each granitic body are thought to have been different in their chemical composition. The granodiorites distributed around Donggyori in the Bognae area (DGd) are different from other granitic rocks within the study area in the contents and differentiation trends of $Al_2O_3$ and MgO as well as in the contents of the trace elements such as Ba, Sr, Pb, Ni, Cr and Y DGd have geochemical features similar to slab-derived adakites such as high $Al_2O_3$, Sr contents and high Sr/Y, La/Yb ratios, but low Y and Yb contents. The major and trace element contents of the DGd fall well within the adakitic field, whereas other Cretaceous granites in the study area are plotted in the island arc ADR area in Sr/Y vs. Y diagram. On the ANK vs. A/CNK and tectonic discrimination diagrams, parental magma type of the granites corresponds to I-type and volcanic arc granite (VAG). Interpretations of the chemical characteristics of the granitic rocks favor their emplacement in a compressional tectonic regime at continental margin during the subduction of Pacific plate. The geochemical and tectonic features reveal that adakite-like signatures of the DGd were generated by the interaction of mantle peridotite and subducted slab-derived adakitic melts (caused by the thermal effect of ridge subduction), and which slightly modified by crustal contamination during emplacement.