• Title/Summary/Keyword: Ni system superalloy

Search Result 7, Processing Time 0.022 seconds

Development of Mechanical Properties of Ni-based Superalloy for Land-based Gas Turbine (산업용 가스터빈 블레이드용 초내열합금의 기계적 특성 향상에 관한 연구)

  • Chun, C.H.;Kim, G.M.;KIM, D.S;Jang, J.C;Kim, J.C.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.18-22
    • /
    • 2003
  • A Study has been made to investigate the effects of hot isostatic press(HIP) and post-HIP heat treatment on microstructures and mechanical properties of Ni-based single crystal superalloy CMSX-4. HIP process was found to heal and close micropores significantly, but did not affect the morphologies of. The elimination of as-cast micropores obtained by HIP process resulted in improved stress-rupture lives of Ni-base single crystal superalloy by 185%.

  • PDF

Microstructural Evolutions and Microhardness of the Heat Treated Ni-base Superalloy Weldment (Ni기 초합금 용접부의 열처리에 따른 미세조직 변화와 미세경도)

  • Kim, G.S.;Ji, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.297-304
    • /
    • 2005
  • This study was performed to determine the repair weldability of the damaged Ni type superalloy used for gas turbine blade. The experimental works included the evaluation of the microstructures of the damaged blade, selection of the repair welding procedure, characterization of repair weldment and finding the heat treatment procedures for repaired weldment. The morphology of the microstructure for the base metal was composed of austenite matrix with cubical ${\gamma}^{\prime}$ phase, MC type coarse precipitates located within grain and fine $M_{23}C_6$ type precipitates decorated at grain boundaries. The repair welding process using 90 amp current exhibited the best weld properties showing no weld microcracks. The solution and aging heat treatments of the repaired weldment could recover the original service properties of the damaged blade.

Improvement of the Weldability of Ni base Superalloy by using a New Powder Supply System (새로운 개념의 분말공급장치를 이용한 Ni기 초합금의 용접성 향상기술)

  • Chang, Yong Sung;Kim, Min Tae;Won, Jong Bum
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.4
    • /
    • pp.241-248
    • /
    • 2008
  • Gas turbine blades serviced for a period are usually repaired for reuse via "rejuvenation processes" including fluoride ion cleaning, brazing or welding, and recoating. Among these processes, the welding process is applied to rebuilt damaged parts of the blade in which welding materials being mostly Ni base superalloy are supplied in the form of powder or wire. When powder is used in the welding process, the uniform supply of powder is a very important factor for the uniformity of welding. According to our experience, the uniformity was very poor with the powder supply system only utilizing pressurized air flow. A new powder supply system was developed in which powder is supplied via air flow and simultaneously mechanically. The welding uniformity was much improved with this new system. In this study, the microstructure and mechanical properties of welded parts obtained from several kinds of powder using the new powder supply system were characterized.

Effect of Aging Time on Creep Property of Cast Haynes 282 Superalloy (초내열합금 Haynes 282 주조합금의 크리프강도에 미치는 시효처리의 영향)

  • Kim, Young-Ju;Ahn, Yong-Sik
    • Journal of Power System Engineering
    • /
    • v.21 no.6
    • /
    • pp.13-20
    • /
    • 2017
  • Ni-base superalloy Haynes 282 was developed as a gas turbine material for use in the ultra-super-critical stage (USC) of next-generation coal-fired power plants. Temperatures in the USC stage exceed $700^{\circ}C$ during operation. In spite of its important role Haynes 282 in increasing the performance of high-pressure turbines, as a result of its high-temperature capability, there is little information on the microstructure, deformation mechanism, or mechanical properties of the cast condition of this alloy. The aim of present study is to examine the creep properties of cast alloy and compare with wrought alloy. The ${\gamma}^{\prime}-precipitates$ were coarsen with the increase of aging time ranging from 8 to 48 hrs. A creep test performed at $750^{\circ}C$ showed faster minimum creep rate and shorter rupture lifetime with the aging time. A creep test performed showed only a slight difference in the rupture life between cast and wrought products. Based on the creep test results, the deformation mechanism is discussed using fractographs.

Modeling the Hall-Petch Relation of Ni-Base Polycrystalline Superalloys Using Strain-Gradient Crystal Plasticity Finite Element Method (변형구배 결정소성 유한요소해석법을 이용한 니켈기 다결정 합금의 Hall-Petch 관계 모델링)

  • Choi, Yoon Suk;Cho, Kyung-Mox;Nam, Dae-Geun;Choi, Il-Dong
    • Korean Journal of Materials Research
    • /
    • v.25 no.2
    • /
    • pp.81-89
    • /
    • 2015
  • A strain-gradient crystal plasticity constitutive model was developed in order to predict the Hall-Petch behavior of a Ni-base polycrystalline superalloy. The constitutive model involves statistically stored dislocation and geometrically necessary dislocation densities, which were incorporated into the Bailey-Hirsch type flow stress equation with six strength interaction coefficients. A strain-gradient term (called slip-system lattice incompatibility) developed by Acharya was used to calculate the geometrically necessary dislocation density. The description of Kocks-Argon-Ashby type thermally activated strain rate was also used to represent the shear rate of an individual slip system. The constitutive model was implemented in a user material subroutine for crystal plasticity finite element method simulations. The grain size dependence of the flow stress (viz., the Hall-Petch behavior) was predicted for a Ni-base polycrystalline superalloy NIMONIC PE16. Simulation results showed that the present constitutive model fairly reasonably predicts 0.2%-offset yield stresses in a limited range of the grain size.

Effect of Oxidation of Bond Coat on Failure of Thermal Barrier Coating (Bond Coat의 산화가 Thermal Barrier Coating의 파괴에 미치는 영향)

  • 최동구;최함메;강병성;최원경;최시경;김재철;박영규;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.1
    • /
    • pp.88-94
    • /
    • 1997
  • The oxidation behavior of the NiCrAlY bond coat and thermal fatigue failure in the plasma-sprayed thermal barrier coating system, ZrO2.8wt%Y2O3 top coat/Ni-26Cr-5Al-0.5Y bond coat/Hastelloy X superalloy substrate, in commercial use for finned segment of gas turbine burner were investigated. The main oxides formed in the bond coat were NiO, Cr2O3, and Al2O3. It divided the oxide distribution at this interface into two types whether an Al2O3 thin layer existed beneath ZrO2/bond coat interface before operation at high temperature or not. While a continuous layer of NiO was formed mainly in the region where the Al2O3 thin layer was present, the absence of it resulted in the formation of mixture of Cr2O3 and Al2O3 beneath NiO layer. Analyses on the fracture surface of specimen spalled by thermal cycling showed that spalling occurred mainly along the ceram-ic coat near ZrO2/bond coat oxide layer interface, but slightly in the oxide layer region.

  • PDF

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.