• 제목/요약/키워드: Ni base superalloy

검색결과 112건 처리시간 0.018초

단조용 니켈기지 초내열합금의 조직예측기술 (Microstructure Prediction Technology of Ni-Base Superalloy)

  • 염종택;김정한;홍재근;박노광
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.89-92
    • /
    • 2009
  • As a class of materials, Ni-base superalloys are among the most difficult metal alloys to forge together with refractory metals and cobalt-base superalloys. The mechanical properties of Ni-base superalloys depend very much on grain size and the strengthening phases, $\gamma$' ($Ni_3$(Al,Ti)-type) and $\gamma$".($Ni_3$Nb-type). Especially, the control of grain size remains as a sole means for the control of mechanical properties. The grain size and distribution changes of the wrought superalloys during hot working and heat treatment are mainly controlled by the recrystallization and grain growth behaviors. In this presentation, prediction technology of grain size through the computer-aided process design, and numerical modeling for predicting the microstructure evolution of Ni-base superalloy during hot working were introduced. Also, some case studies were dealt with actual forming processes of Ni-base superalloys.

  • PDF

Ni기 초내열합금 용접부의 고온균열에 관한 연구(I) - 용접금속의 응고균열 감수성에 미치는 Fe의 영향 - (A Study on Hot Cracking in Ni-Base Superalloy Welds (I) - Effect of Fe Contents on Solidification Cracking Susceptibility in Weld Metal -)

  • 우인수;강정윤
    • Journal of Welding and Joining
    • /
    • 제19권6호
    • /
    • pp.614-621
    • /
    • 2001
  • A study was carried out to determine the solidification cracking susceptibility of Ni-base superalloy as a function of Fe content in base metal. Three kinds of Ni-base superalloys with three different levels of Fe content were used. The solidification cracking susceptibility was evaluated by the Trans-Varestraint test at four different strain levels. Quantitative analysis of crack revealed that the solidification crack length and the temperature range in which hot cracking occurred in fusion zone (Brittle Temperature Range, BTR) decreased with a decrease in Fe content. Further, the thermo-calc data indicated that the solidification temperature range also decreased with decreasing Fe content. From these results, it was deduced that the improvement of the solidification cracking susceptibility with decreasing Fe content was attributed to the decrease of the solidification temperature range.

  • PDF

저탄소강에 대한 Ni기 초합금의 레이저 클래딩 (Laser cladding of Ni-base superalloy on low carbon steel)

  • 이제훈;서무홍;김정오;한유희
    • 한국레이저가공학회지
    • /
    • 제2권2호
    • /
    • pp.34-41
    • /
    • 1999
  • A RS840 $CO_2$laser and a powder auto-feeding apparatus have been used to deposit single tracks of Ni-base superalloy on low carbon steel. In this paper, the effects of laser cladding parameters on clad geometry, dilution and microhardness are studied. As a results, the w/h ratio of the clad layer increases with decreasing powder feed rate and increasing laser scan speed. Increase of powder density and decrease of specific energy have little effect on dilution. It was found that the clad layer of the highest hardness has a structure in which fine and leaf like phases are dispersed in ${\gamma}$Ni matrix.

  • PDF

니켈기 초내열합금 Alloy 263의 고온인장 및 크리프 변형기구 (Mechanisms of Tensile and Creep Deformation at Elevated Temperatures in a Ni-Base Superalloy Alloy 263)

  • 김인수;최백규;홍현욱;조창용
    • 대한금속재료학회지
    • /
    • 제49권7호
    • /
    • pp.535-540
    • /
    • 2011
  • The tensile and creep behaviors of Alloy 263, which is a wrought Ni-base superalloy used for gas turbine combustion systems, was studied. Anomalous increase of yield strength and abrupt decrease of elongation with increasing temperature were observed after tensile testing at an intermediate temperature. Elongation of the superalloy decreased as the temperature increased to and above 540$^{\circ}C$, and it reached a minimum value at 760$^{\circ}C$. It was found that creep strain was also very low at the same temperature. Inhomogeneous deformation with intensive slip bands was observed in the specimens tested at low temperature. A thermally-assisted dislocation climb process was regularly conducted at high temperature. Twinning was found to be an important mechanism of both tensile and creep deformations of the superalloy at an intermediate temperature where ductility minimum was observed.

일방향응고 Ni기초내열합금 GTD-111의 천이액상확산접합(I) (Transient Liquid Phase Bonding of Directionally Solidified Ni Base Superalloy, GTD-111(I) - Bonding Phenomena and Mechanism -)

  • 강정윤;권민석;김인배;김대업;우인수
    • Journal of Welding and Joining
    • /
    • 제21권2호
    • /
    • pp.82-88
    • /
    • 2003
  • The bonding phenomenon and mechanism in the transient liquid phase bonding(TLP Bonding) of directionally solidified Ni base superalloy, GTD-111 was investigated. At the bonding temperature of 1403K, liquid insert metal was eliminated by isothermal solidification which was controlled by the diffusion of B and Si into the base metal and solids in the bonded interlayer grew epitaxially from mating base metal inward the insert metal. The number of grain boundaries formed at the bonded interlayer was corresponded with those of base metal. The liquation of grain boundary and dendrite boundary occurred at 1433K. At the bonding temperature of 1453K which is higher than liquation temperature of grain boundary, liquids of the Insert metal were connected with liquated grain boundaries and compositions in each region mixed mutually. In Joints held for various time at 1453t phases formed at liquated grain boundary far from the interface were similar to those of bonded interlayer. With prolonged holding time, liquid phases decreased gradually and liquids of continuous band shape divided many island shape. But liquid phases did not disappeared after holding for 7.2ks at 1453k. Isothermal solidification process at the bonding temperature which is higher than the liquation temperature of the grain boundary was controlled by diffusion of Ti to be result in liquation than B or Si. in insert metal. (Received January 15, 2003)

실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론 (Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation)

  • 김성우;김동진
    • Corrosion Science and Technology
    • /
    • 제12권3호
    • /
    • pp.132-141
    • /
    • 2013
  • This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.

BONDING PHENOMENON IN TRANSIENT LIQUID PHASE BONDING OF NI BASE SUPERALLOY GTD-111

  • Kang, Chung-Yun;Kim, Dae-Up;Woo, In-Soo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.798-802
    • /
    • 2002
  • Metallurgical studies on the bonded interlayer of directionally solidified Ni-base superalloy GTD111 joints were carried out during transient liquid phase bonding. The formation mechanism of solid during solidification process was also investigated. Microstructures at the bonded interlayer of joints were characterized with bonding temperature. In the bonding process held at 1403K, liquid insert metal was eliminated by well known mechanism of isothermal solidification process and formation of the solid from the liquid at the bonded interlayer were achieved by epitaxial growth. In addition, grain boundary formed at bonded interlayer is consistent with those of base metal. However, in the bonding process held at 1453K, extensive formation of the liquid phase was found to have taken place along dendrite boundaries and grain boundaries adjacent to bonded interlayer. Liquid phases were also observed at grain boundaries far from the bonding interface. This phenomenon results in liquation of grain boundaries. With prolonged holding, liquid phases decreased gradually and changed to isolated granules, but did not disappeared after holding for 7.2ks at 1473K. This isothermal solidification occurs by diffusion of Ti to be result in liquation. In addition, grain boundaries formed at bonded interlayer were corresponded with those of base metal. In the GTD-ll1 alloy, bonding mechanism differs with bonding temperature.

  • PDF

니켈기 초합금 레이저 용접부의 미세조직과 기계적 특성 (Microstructure and Mechanical Properties of Laser Welded Ni-base Superalloy)

  • 최철
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2004년도 춘계 학술발표대회 개요집
    • /
    • pp.123-125
    • /
    • 2004
  • Flat specimens of polycrystal Ni-base superalloy with U-shape notch on both sides were laser cladded by injection of IN738LC powder onto surface. The quality of cladding was investigated by microstructural analysis and high temperature tension test, creep test at 950$^{\circ}C$. Effects of heat treahnent and the angle between the tension axis and the direction of weldment were also investigated.

  • PDF

Ni기 초합금 용접부의 열처리에 따른 미세조직 변화와 미세경도 (Microstructural Evolutions and Microhardness of the Heat Treated Ni-base Superalloy Weldment)

  • 김광수;지정훈
    • 열처리공학회지
    • /
    • 제18권5호
    • /
    • pp.297-304
    • /
    • 2005
  • This study was performed to determine the repair weldability of the damaged Ni type superalloy used for gas turbine blade. The experimental works included the evaluation of the microstructures of the damaged blade, selection of the repair welding procedure, characterization of repair weldment and finding the heat treatment procedures for repaired weldment. The morphology of the microstructure for the base metal was composed of austenite matrix with cubical ${\gamma}^{\prime}$ phase, MC type coarse precipitates located within grain and fine $M_{23}C_6$ type precipitates decorated at grain boundaries. The repair welding process using 90 amp current exhibited the best weld properties showing no weld microcracks. The solution and aging heat treatments of the repaired weldment could recover the original service properties of the damaged blade.