• Title/Summary/Keyword: Ni Electrode

Search Result 551, Processing Time 0.034 seconds

Metal Gate Electrode in SiC MOSFET (SiC MOSFET 소자에서 금속 게이트 전극의 이용)

  • Bahng, W.;Song, G.H.;Kim, N.K.;Kim, S.C.;Seo, K.S.;Kim, H.W.;Kim, E.D.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.358-361
    • /
    • 2002
  • Self-aligned MOSFETS using a polysilicon gate are widely fabricated in silicon technology. The polysilicon layer acts as a mask for the source and drain implants and does as gate electrode in the final product. However, the usage of polysilicon gate as a self-aligned mask is restricted in fabricating SiC MOSFETS since the following processes such as dopant activation, ohmic contacts are done at the very high temperature to attack the stability of the polysilicon layer. A metal instead of polysilicon can be used as a gate material and even can be used for ohmic contact to source region of SiC MOSFETS, which may reduce the number of the fabrication processes. Co-formation process of metal-source/drain ohmic contact and gate has been examined in the 4H-SiC based vertical power MOSFET At low bias region (<20V), increment of leakage current after RTA was detected. However, the amount of leakage current increment was less than a few tens of ph. The interface trap densities calculated from high-low frequency C-V curves do not show any difference between w/ RTA and w/o RTA. From the C-V characteristic curves, equivalent oxide thickness was calculated. The calculated thickness was 55 and 62nm for w/o RTA and w/ RTA, respectively. During the annealing, oxidation and silicidation of Ni can be occurred. Even though refractory nature of Ni, 950$^{\circ}C$ is high enough to oxidize it. Ni reacts with silicon and oxygen from SiO$_2$ 1ayer and form Ni-silicide and Ni-oxide, respectively. These extra layers result in the change of capacitance of whole oxide layer and the leakage current

  • PDF

Development of Ti-Fe-X metal hydride electrode by mechanical alloying (기계적 합금화법에 의한 Ti-Fe-X계 수소 저장합금의 제조에 관한 연구)

  • Ha, Chang-Jin;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.112-122
    • /
    • 1995
  • Metal hydride alloys of TiFe based system have been produced by mechanical alloying(MA) method and their electrochemical characteristics have been evaluated for application for Ni/MH battery electrode. These alloys became amorphous after 36hrs ball milling and easily activated electrochemically. All MA amorphous alloys reached at the first charge/discharge cycle the maximum capacity which was 2-3 times higher than the crystalline state. But their cyclic lives were much inferior to the crystalline state. Alloying elements such as Ni, Co, Cr, Mo substituting Fe greatly improved the capacity and 180 mAh/g capacity was obtained in an alloy of TiFe_{0.6}Ni_{0.1}Co_{0.1}Cr_{0.1}Mo_{0.1}$.

  • PDF

Template Synthesis of $Ni(OH)_2$ nanowires by Electrochemical Process

  • Zhang, Wentao;Beili, Pang;Lee, Hong-Ro
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.68-68
    • /
    • 2008
  • There are several methods for oxide coating on metals, such as aluminum or carbon nanotubes(CNTs). Usually CVD method is introduced for various oxide coating on CNTs. Another method is electrochemical method which use potential-pH diagram for oxide coating on metal or CNTs. In this experiment, electrochemical coating parameter for oxide coating on aluminum template modified by acids and hydrogen peroxide ($H_2O_2$) were examined. SEM micrographs displayed clearly $Ni(OH)_2$ coating on template. For confirmation of electrochemical method application to EDLC electrode material fabrication, EDS spectrum was analyzed.

  • PDF

A study on the developmenet of Anode Material for Molten Carbonate Fuel Celt - Cu-base electrode- (용융탄산염 연료전지의 양극 및 대체재료의 제작에 관한 연구 -Cu-base 전극에 대하여-)

  • 박재우;김용덕;황응림;김선진;강성군
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.4
    • /
    • pp.243-254
    • /
    • 1995
  • The fabrication process of Cu-base anode for replacing Ni-base anode of molten carbonate fuel cell was investigated. Electrochemical performance and thermal stability of Cu-base anode were also investigated. Green sheet was prepared by mixing Cu and Ni powder with 1.5wt% methylcellulose and 100wt% water. The pore-size distribution of the Cu-base anode sintered at $800^{\circ}C$ for 30min showed almost uniform pore-size ranging from 4 to 20$\mu\textrm{m}$ and it was considered suitable for MCFC anode. Cu-Ni anode containing between 35 to 50wt% Ni exhibited current density of 111mA/$\textrm{cm}^2$ at 100mV overpotential and it was almost the some value for pure Ni anode. The sintering resistance of Cu-Ni increased with an increase of Ni addition. It was considered that the increase of sintering resistance was due to the decrease of diffusion rate of Cu and Ni with increasing the addition of Ni in Cu-Ni alloy.

  • PDF

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.

Railway system standby power Nickel metal hydride battery (철도시스템비상전원용 니켈수소(NiMH)전지)

  • Park, Dong-Pil
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.636-645
    • /
    • 2006
  • In order to use railway system standby power, produced 160Ah NiMH battery that would be able to substitute the lead acid battery or NiCd battery form which contain the toxic material in environment, using parallel connected 80Ah NiMH battery. And in order to develop proper electrode in the 160Ah NiMH battery, tested high rate discharge performance of the ternary electrolyte. 160Ah NiMH battery evaluated the various test in order to use railway system standby power.

  • PDF

Effect of Vapor-Cooled Heat Stations in a Cryogenic Vessel (극저온액체 저장용기에서 열전도 차폐단의 영향)

  • Kim, S.Y.;Kang, B.H.;Choi, H.J.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.9 no.4
    • /
    • pp.169-176
    • /
    • 1998
  • An experimental study on effect of vapor-cooled heat stations in a 5.5 liter cryogenic vessel has been performed. The cryogenic vessel is made of stainless steel of thickness of 1mm and insulated by the combined insulation of vacuum, MLI(multi-layer insulation) and vapor-cooled radiation shield. Vapor-cooled heat stations are also constructed based on the 1-dimensional thermal analysis to reduce the heat inleak through a filling tube. Thermal analysis indicates that the vapor-cooled heat stations can substantially enhance the performance of vessel for cryogenic fluids with high $C_p/h_{fg}$ where $C_p$ the specific heat and $h_{fg}$ the heat of vaporization, such as $LH_2$ and LHe. The experimental results for $LN_2$ shows that the total heat inleak into inner vessel consists of 14% radiation and 86% conduction through the filling tube. Therefore, it is expected that the conduction heat in leak of the vessel for high $C_p/h_{fg}$ cryogenic fluids can be significantly reduced. powders. The amount of copper coating was 20wt%. In order to examine corrosion behavior of the electrodes, the corrosion current and the current density, in 6M KOH aqueous solution after removal of oxygen in the solution, were measured by potentiodynamic and cyclic voltamo methods. The results showed that Co in the alloy increased corrosion resistance of the electrode whereas Ni decreased the stability of the electrode during the charge-discharge cycles. The electrode used Si sealant as a binder showed a lower corrosion current density than the electrode used PTFE and the electrode used Cu-coated alloy powders showed the best corrosion resistance.

  • PDF

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo;In, Su-Il;Kim, Jong-Duk
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.

Mathematical Modeling on Electrodeposition of Compositionally Modulated Cu-Ni Alloy (전기화학적 방법에 의한 Cu-Ni 다층박막합금의 수학적 모델링)

  • 박경완;이철경;손헌준
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 1994
  • It is well known that compositionally modulated Cu-Ni alloy can be produced by an electrochemical method in Ni sulfate solution containing trace amount of Cu. a mathematical model is presented to describe the current distribution and weight percent of Cu in Ni layer on the rotating disk electrode. The model includes convective-diffusion equation, the Laplace's equation and various overpotentials, and is solved numerically. The thickness of Cu layer is almost uniform whereas the thickness of Ni layer as well as the Ni/Cu weight ratio are increased approaching to the edge of the disk. These results agree well with the experimental values. The ohmic potential drop is suggested as a major cause of a nonuniformity in Ni layer. The optimum plating condition for the fabrication of susperlattice is proposed based on the results of this study.

  • PDF