• Title/Summary/Keyword: Ni/MgO

Search Result 340, Processing Time 0.035 seconds

The effect of MgO content on highly active Ni-MgO-$Al_2O_3$ catalysts prepared by homogeneous precipitation method (균일용액침전법으로 제조한 MgO 함량에 따른 고활성 Ni-MgO-$Al_2O_3$ 촉매에 대한 연구)

  • Jung, Youshick;Rhee, Youngwoo;Koo, Keeyoung;Jung, Unho;Youn, Wanglai;Seo, Yongseog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.155-155
    • /
    • 2011
  • 용융탄산염 연료전지(MCFC)는 $650^{\circ}C$에서 작동하는 고온형 연료전지 시스템이다. 이 시스템은 천연가스 등을 개질하여 생산된 수소를 바로 전기로 생산할 수 있는 시스템으로 열효율이 높으며, 현재 대체 발전시스템으로 각광을 받고 있다. MCFC는 개질방식에 따라 내부개질 방식과 외부개질 방식이 있다. 내부개질 방식은 수소를 생산하는 개질기가 스택내부에 장착된 형식으로 천연가스를 스택내부에서 개질하여 바로 전기를 생산하는 방식이다. 이 내부개질반응에 사용되는 촉매로는 알루미나에 고함량 (약 50 wt.%)으로 담지된 니켈(Ni) 계열촉매이 주로 쓰이고 있다. 이 고함량으로 담지된 촉매는 대부분 높은 활성을 보인다. 비교적 낮은 온도 운전조건 (약 $580{\sim}620^{\circ}C$)을 가지는 MCFC 내부개질에 적용하기 위해서는 활성점인 니켈을 최대한 담지체에 고르게 분산 시켜야한다. 이를 위해서 MgO를 이용하여 촉매의 활성점을 높게 분산시키는 연구를 진행 하였다. 촉매를 제조하는 방법으로 요소(urea)를 이용한 균일용액침전법을 이용하였다. 니켈함량은 50 wt.%로 고정을 한 다음, MgO 양과 $Al_2O_3$ 양을 각각 0 ~ 45 wt.%와 5 ~ 50 wt.%로 조절하면서 촉매를 제조하여 그 특성들을 분석하였다. 물성을 비교하기 위해서, X-선 회절분석 (XRD) 및 TPR, 물리화학흡착 실험을 하였다. 촉매의 활성을 살펴보기 위해서, fresh 상태 및 피독 상태에서 메탄수증기 개질활성 실험을 실시하였다. MgO 함량이 없거나 적은 촉매에서는 높은 BET surface area와 작은 NiO, metallic Ni 결정 크기가 나타났다. 반면 MgO 함량이 높은 촉매에서 낮은 BET surface area와 비교적 큰 NiO, metallic Ni 결정 크기가 나타났다. 또한 XRD 분석에서 MgO 함량이 증가할 수 록 MgO 결정 피크가 명확히 나타났으며, $MgAl_2O_4$ 피크는 나타나지 않았다. TPR 분석에서 촉매들의 환원 피크를 측정한 결과, 저함량의 MgO를 포함한 촉매는 $700^{\circ}C$ 부근에 환원 피크가 관찰되었고 MgO가 고함량인 촉매는 환원 피크가 $400^{\circ}C$ 부근에서 관찰되었다. 촉매의 초기 fresh 상태에서의 활성은 고함량 MgO를 포함한 Ni-90M10A 샘플을 제외하고 모든 촉매가 거의 비슷하게 나타났다. 그러나 $K_2CO_3$ 피독 상태에서는 MgO 함량이 증가할 수 록 활성이 좋지 않았음을 알 수 있었다. 따라서 MgO가 소량 포함된 촉매의 경우 fresh 상태에서는 우수한 물성과 활성을 보이지만, 피독상태에서는 MgO가 포함되지 않은 Ni-$Al_2O_3$ 촉매가 우수한 활성을 보였다.

  • PDF

Enhancement of coke resistance on Ni/MgO-$Al_2O_3$ catalyst in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for the syngas production (합성가스 생산을 위한 복합개질 반응에서 $Ni/MgO-Al_2O_3$ 촉매의 탄소 침적 저항성 향상에 관한 연구)

  • Koo, Kee-Young;Roh, Hyun-Seog;Jung, Un-Ho;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.727-730
    • /
    • 2009
  • Highly active and stable nano-sized Ni catalysts supported on MgO-$Al_2O_3$ calcined from hydrotalcite-like materials have been successfully developed with a strong metal to support interaction (SMSI) to enhance the coke resistance in combined $H_2O$ and $CO_2$ reforming of $CH_4$ (CSCRM) for syngas ($H_2$/CO=2) production. The change of the surface area and NiO crystallite size with varying the pre-calcination temperature of support and Mgo content was investigated in relation to the coke resistance. As increasing the pre-calcination temperature, the surface area decreases and the metal to support interaction becomes weak. As a consequence, the coke deposition was more severe on catalysts pre-calcined at high temperature. It was concluded that highly dispersed Ni metal in the surface of Ni/MgO-$Al_2O_3$ catalyst (MgO=30 wt%) pre-calcined at $800^{\circ}C$ had a strong metal to support interaction (SMSI) resulting in an increase of coke resistance and high activity.

  • PDF

Toxicity Evaluation of Metals and Metal-oxide Nanoparticles based on the Absorbance, Chlorophyll Content, and Cell Count of Chlorella vulgaris (Chlorella vulgaris의 흡광도, 클로로필 및 개체수 통합 영향에 근거한 중금속 및 나노입자 독성 조사)

  • Jang, Hyun Jin;Lee, Mun Hee;Lee, Eun Jin;Yang, Xin;Kong, In Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, toxicities of seven metals (Cu, Cd, Cr, As(III), As(V), Zn, Ni) and five metal oxide nanoparticles (NPs: CuO, ZnO, NiO, $TiO_2$, $Fe_2O_3$) were evaluated based on the growth of Chlorella vulgaris. Effect on algae growth was evaluated by integrating the results of absorption, chlorophyll content, and cell count. The toxicity rankings of metals was observed as Cr ($0.7mgL^{-1}$) > Cu ($1.7mgL^{-1}$) > Cd ($3.2mgL^{-1}$) > Zn ($3.9mgL^{-1}$) > Ni ($13.2mgL^{-1}$) > As(III) ($17.8mgL^{-1}$) ${\gg}$ As(V) (> $1000mgL^{-1}$). Slightly different orders and sensitivities of metal toxicity were examined depending on endpoints of algal growth. In case of NPs, regardless of endpoints, similar toxicity rankings of NPs ($TEC_{50}$) were observed, showing ZnO ($2.4mgL^{-1}$) > NiO ($21.1mgL^{-1}$) > CuO ($36.6mgL^{-1}$) > $TiO_2$ ($62.5mgL^{-1}$) > $Fe_2O_3$ ($82.7mgL^{-1}$). These results indicate that an integrating results of endpoints might be an effective strategy for the assessment of contaminants.

The Study of Magnetic Structure of Ni1-xMgxFe2O4 Ferrite System by Mössbauer Spectroscopy (Mössbauer 분광법에 의한 Ni1-xMgxFe2O4 Ferrite의 자기구조 연구)

  • Yoon, In-Seop;Baek, Seung-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2009
  • $Ni_{1-x}Mg_xFe_2O_4$ ferrite system was studied by using X-ray diffraction and $M{\ddot{o}}ssbauer$ spectroscopy. The samples were prepared by ceramic sintering method with Mg content x. The X-ray diffraction patterns of samples show phase of cubic spinel structure. There are no remarkable changes of lattice constants in $Ni_{1-x}Mg_xFe_2O_4$ ferrite system. The $M{\ddot{o}}ssbauer$ spectra were consisted of two sets of six lines, respectively, corresponding to $Fe^{3+}$ at tetrahedral and octahedral sites. The magnetic hyperfine field of samples was decreased as increasing Mg contents x in both sites and it was shown Yafet-Kittel magnetic structure. $NiFe_2O_4$ was shown complete inverse spinel, but $NiFe_2O_4$ was shown partial inverse spinel which absorption area ratio (oct/tet) was 1.449 in $M{\ddot{o}}ssbauer$ spectrum.

Chemical Poisoning of Ni/MgO Catalyst by Alkali Carbonate Vapor in the Steam Reforming Reaction of DIR-MCFC

  • 문형대;임태훈;이호인
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1413-1417
    • /
    • 1999
  • Chemical poisoning of Ni/MgO catalyst was induced by hot alkali carbonate vapor in molten carbonate fuel cell (MCFC), and the poisoned (or contaminated) catalyst was characterized by TPR/TPO, FTIR, and XRD analysis. Carbonate electrolytes such as K and Li were transferred to the catalyst during DIR-MCFC operation at 650 ℃. The deposition of alkali species on the catalyst consequently led to physical blocking on catalytic active sites and structural deformation by chemical poisoning. TPR/TPO analysis indicated that K species enhanced the reducibility of NiO thin film over Ni as co-catalyst, and Li species lessened the reducibility of metallic Ni by chemical reaction with MgO. FTIR analysis of the poisoned catalyst did not exhibit the characteristic ${\vector}_1$$(D_{3h})$ peaks (1055 $cm^{-1},\;1085\;cm{-1})$ for pure crystalline carbonates, instead a new peak (1120 $cm^{-1})$ was observed proportionally with deformed alkali carbonates. From XRD analysis, the oxidation of metallic Ni into $Ni_xMg_{1-x}O$ was confirmed by the peak shift of MgO with shrinking of Ni particles. Conclusively, hot alkali species induced both chemical poisoning and physical deposition on Ni/MgO catalyst in DIR-MCFC at 650 ℃.

Addition effects of nanoscale NiO on microstructure and superconducting properties of MgB2

  • Ranot, Mahipal;Jang, S.H.;Oh, Y.S.;Shinde, K.P.;Kang, S.H.;Chung, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.37-40
    • /
    • 2016
  • We have investigated the addition effect of NiO magnetic nanoparticles on crystal structure, microstructure as well as superconducting properties of $MgB_2$. NiO-added $MgB_2$ samples were prepared by the solid-state reaction method. The superconducting transition temperature ($T_c$) of 37.91 K was obtained for pure $MgB_2$, and $T_c$ was found to decrease systematically on increasing the addition level of NiO. X-ray diffraction (XRD) analysis revealed that no substitution of Ni for Mg in the lattice of $MgB_2$ was occurred. The microstructural analysis shows that the pure $MgB_2$ sample consists of plate shape $MgB_2$ grains, and the grains get refined to smaller size with the addition of NiO nanoparticles. At 5 K, high values of critical current density ($J_c$) were obtained for small amount NiO-added $MgB_2$ samples as compared to pure sample. The enhancement in $J_c$ could be attributed to the refinement of $MgB_2$ grains which leads to high density of grain boundaries in NiO-added $MgB_2$ samples.

Synthesis of (Co,Mg)Al2O4 and (Ni,Mg)Al2O4 Blue Ceramic Nano Pigment by Polymerized Complex Method (착체중합법을 이용한 (Co,Mg)Al2O4 및 (Ni,Mg)Al2O4 청색 나노 무기안료 합성)

  • Son, Bo-Ram;Yoon, Dea-Ho;Kim, Jin-Ho;Han, Kyu-Sung;Cho, Woo-Suk;Hwang, Kwang-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.510-517
    • /
    • 2013
  • In this study, the properties of blue inorganic nano-pigments with a spinel structure were systematically investigated. We report the preparation of a blue ceramic nano-pigment and the Co and Ni substitutional effects on the blue color. $MgAl_2O_4$ was selected as the crystalline host network for the synthesis of cobalt and nickel-based blue ceramic nano-pigments. Various compositions of $Co_xMg_{1-x}Al_2O_4$ and $Ni_xMg_{1-x}Al_2O_4$ ($0{\leq}x{\leq}1$) powders were prepared using apolymerized complex method. The obtained powder was preheated at $400^{\circ}C$ for 5 h and then calcined at $1000^{\circ}C$ for 5 h. XRD patterns of the (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ samples showed a single phase of the spinel structure in all compositions. TEM results indicated nano-sized pigments for (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ with a particle size ranging from 20 to 50 nm. The characteristics of the color tones of (Co,Mg)$Al_2O_4$ and (Ni,Mg)$Al_2O_4$ were analyzed by CIE $L^*a^*b^*$ measurements. In addition, the thermal stability and the binding characteristics of (Co,Mg)$Al_2O_4$, (Ni,Mg)$Al_2O_4$ are discussed in terms of the TG-DSC and FT-IR results, respectively.

Hydrogen Production from Methane Reforming Reactions over Ni/MgO Catalyst

  • Wen Sheng Dong;No, Hyeon Seok;Zhong Wen Liu;Jeon, Gi Won;Park, Sang Eon
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1323-1327
    • /
    • 2001
  • The catalyst Ni/MgO (Ni : 15 wt%) has been applied to methane reforming reactions, such as steam reforming of methane (SRM), partial oxidation of methane (POM), and oxy-steam reforming of methane (OSRM). It showed high activity and good stability in all the reforming reactions. Especially, it exhibited stable catalytic performance even in stoichiometric SRM (H2O/CH4 = 1). From TPR and H2 pulse chemisorption results, a strong interaction between NiO and MgO results in a high dispersion of Ni crystallite. Pulse reaction results revealed that both CH4 and O2 are activated on the surface of metallic Ni over the catalyst, and then surface carbon species react with adsorbed oxygen to produce CO.

Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts (Ni-K2TixOy 촉매를 이용한 해조류 유래 수열 액화 원료의 수증기 개질 반응 연구)

  • Park, Yong Beom;Lim, Hankwon;Woo, Hee-Chul
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.104-112
    • /
    • 2017
  • Hydrogen production via steam reforming of liquefaction liquid from marine algae over hydrothermal liquefaction was carried out at 873 ~ 1073 K with a commercial catalyst and Ni based $K_2Ti_xO_y$ added catalysts. Liquefaction liquid obtained by hydrothermal liquefaction (503 K, 2 h) was used as a reactant and comparison studies for catalytic activity over different catalysts (FCR-4-02, $Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, $Ni/K_2Ti_xO_y-ZrO_2/CeO_2$ and Ni/$K_2Ti_xO_y$-MgO), reaction temperature were performed. Experimental results showed Ni/$K_2Ti_xO_y$ based catalysts ($Ni/K_2Ti_xO_y-Al_2O_3$, $Ni/K_2Ti_xO_y-SiO_2$, Ni/$K_2Ti_xO_y-ZrO_2$/ $CeO_2$ and Ni/$K_2Ti_xO_y$-MgO) have a higher activity than commercial catalyst (FCR-4-02) and In particular, a product composition was different depending on support materials. An acidic support ($Al_2O_3$) and a basic support (MgO) led to a higher selectivity for CO while a neutral support ($SiO_2$) and a reducing support ($ZrO_2/CeO_2$) resulted in a higher $CO_2$ selectivity due to water gas shift reaction.

Synthesis of Ethylamines for the Reductive Amination of Ethanol over Ni Catalysts: Effect of Supports (니켈 촉매상에서 에탄올의 환원성 아민화반응에 의한 에틸아민 제조 : 담체의 영향)

  • Jeong, Ye-Seul;Shin, Chae-Ho
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.714-722
    • /
    • 2019
  • Catalysts were prepared by using incipient wetness impregnation method with 17 wt% Ni on a support ($SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, $SiO_2$, $TiO_2$, MgO) and the catalytic activity in the reductive amination of ethanol with ammonia in the presence of hydrogen was compared and evaluated. The catalysts used before and after the reaction were characterized using X-ray diffraction, nitrogen adsorption, ethanol-temperature programmed desorption (EtOH-TPD), isopropanol-temperature programmed desorption (IPA-TPD), and hydrogen chemisorption etc. In the case of preparing $ZrO_2$ and $Y_2O_3$ supports, the small amount of Si dissolution from the Pyrex reactor surface provoked the formation of mixed oxides $SiO_2-ZrO_2$ and $SiO_2-Y_2O_3$. Among the catalysts used, $Ni/SiO_2-Y_2O_3$ catalyst showed the best activity, and this good activity was closely related to the highest nickel dispersion, and low desorption temperature in EtOH-TPD and IPA-TPD. The low catalytic activity on Ni/MgO catalysts showed low activity due to the formation of NiO-MgO solid-solutions. In the case of $Ni/TiO_2$, the reactivity was low due to the low nickel metal phase due to strong metal-support interaction. In the case of using a support as $SiO_2-Y_2O_3$, $Al_2O_3$, $SiO_2-ZrO_2$, and $SiO_2$, the selectivities of ethylamines and acetonitrile were not significantly different at similar ethanol conversion.