• Title/Summary/Keyword: Ni/Carbon nanoparticle

Search Result 14, Processing Time 0.023 seconds

Hydrogen Storage in Ni Nanoparticles-Dispersed Multiwall Carbon Nanotubes (Ni Nanoparticles이 doping된 Multiwall Carbon Nanotubes의 수소저장 특성에 관한 연구)

  • Lee, Ho;Kim, Jin-Ho;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.1
    • /
    • pp.74-82
    • /
    • 2002
  • Ni nanoparticles이 표면에 분산된 mutiwall carbon nanotubes (MWNTs)의 수소저장 특성을 분석하였다. Metal nanoparticles의 분산 방법은 incipient wetness impregnation procedure을 사용하였는데, 이러한 Ni catalysts의 역할은 기존에 알려진 Li, K doping과 같은 개념으로 기상의 수소를 분해하여 carbon 표면에 chemical adsorption 시키는 역할을 하게 된다. 실제로 Ni nanoparticles이 6wt% loading된 경우에는 thermal desorption spectra를 분석한 결과 ~2.8wt% hydrogen이 ~340-520K의 온도범위에서 방출되는 것을 관찰할 수 있었다. Kissingers plot을 통해서 MWNTs와 hydrogen과 interaction energy를 구한 결과 ${\sim}31kJ/molH_2$를 얻을 수 있었으며 이 값은 기존의 SWNTs에 hydrogen이 physi-sorption에서 실험적으로 얻을 수 있었던 값보다 1.5배 큰 값이라고 할 수 있다. 자세한 수소저장 기구를 분석하기 위해서 FT-IR분석을 한 결과 C-Hn stretching vibrations이 관찰되었으며 mono-hydride와 weak di-hydride $sp^3$가 형성된 것으로 해석 될 수 있었다. 이와 같은 결과는 Ni nanoparticle들이 예상과 같이 hydrogen molecules을 dissociation하는 역할을 하는 것을 의미한다. 연속적인 thermal desorption 실험을 통해 가역성도 평가하였다.

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Controlled Growth of Multi-walled Carbon Nanotubes Using Arrays of Ni Nanoparticles (Ni 나노입자의 배열을 이용한 다중벽 탄소나노튜브의 제어된 성장)

  • Ji, Seung-Muk;Lee, Tae-Jin;Bahng, Jae-Ho;Hong, Young-Kyu;Kim, Han-Chul;Ha, Dong-Han;Kim, Chang-Soo;Koo, Ja-Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.473-480
    • /
    • 2008
  • We have investigated the optimal growth conditions of carbon nanotubes (CNTs) using the chemical vapor deposition and the Ni nanoparticle arrays. The diameter of the CNT is shown to be controlled down to below 20 nm by changing the size of Ni particle. The position and size of Ni particles are controlled continuously by using wafer-scale compatible methods such as lithography, ion-milling, and chemical etching. Using optimal growth conditions of temperature, carbon feedstock, and carrier gases, we have demonstrated that an individual CNT can be grown from each Ni nanoparticle with almost 100% probability over wide area of $SiO_2/Si$ wafer. The position, diameter, and wall thickness of the CNT are shown to be controlled by adjusting the growth conditions.

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon (자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성)

  • Park, Sung Soo;Ha, Chang-Sik
    • Journal of Adhesion and Interface
    • /
    • v.18 no.2
    • /
    • pp.75-81
    • /
    • 2017
  • In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

Ni Nanoparticle Anchored on MWCNT as a Novel Electrochemical Sensor for Detection of Phenol

  • Wang, Yajing;Wang, Jiankang;Yao, Zhongping;Liu, Chenyu;Xie, Taiping;Deng, Qihuang;Jiang, Zhaohua
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850134.1-1850134.10
    • /
    • 2018
  • Increasing active sites and enhancing electric conductivity are critical factors to improve sensing performance toward phenol. Herein, Ni nanoparticle was successfully anchored on acidified multiwalled carbon nanotube (a-MWCNT) surface by electroless plating technique to avoid Ni nanoparticle agglomeration and guarantee high conductivity. The crystal structure, phase composition and surface morphology were characterized by XRD, SEM and TEM measurement. The as-prepared Ni/a-MWCNT nanohybrid was immobilized onto glassy carbon electrode (GCE) surface for constructing phenol sensor. The phenol sensing performance indicated that Ni/a-MWCNT/GCE exhibited an amazing detection performance with rapid response time of 4 s, a relatively wide detection range from 0.01 mM to 0.48 mM, a detection limit of $7.07{\mu}M$ and high sensitivity of $566.2{\mu}A\;mM^{-1}\;cm^{-2}$. The superior selectivity, reproducibility, stability and applicability in real sample of Ni/a-MWCNT/GCE endowed it with potential application in discharged wastewater.

Ni Nanoparticles-hollow Carbon Spheres Hybrids for Their Enhanced Room Temperature Hydrogen Storage Performance

  • Kim, Jin-Ho;Han, Kyu-Sung
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.550-557
    • /
    • 2013
  • A glucose hydrothermal method is described for preparing hollow carbon spheres (HCS), which have a regular morphology and a high Brunauer-Emmett-Teller surface area of 28.6 m2/g. Scanning electron microscopy shows that they have thin shells and diameter between 2 and 8 ${\mu}m$. The HCSs were modified for the enhanced room temperature hydrogen storage by employing Ni nanoparticles on their surface. The Ni-decorated HCSs were characterized by X-ray diffraction, transmission electron microscopy coupled with an energy dispersive spectroscope, and an inductively coupled plasma spectrometer, indicating that fine and well-distributed Ni nanoparticles can be accomplished on the HCSs. The hydrogen uptake capacity in HCSs with and without Ni loading was evaluated using a high-pressure microbalance at room temperature under a hydrogen pressure upto 9 MPa. As much as 1.23wt.% of hydrogen can be stored when uniformly distributed Ni nanoparticles are formed on the HCSs, while the hydrogen uptake capacity of as-received HCSs was 0.41 wt.%. For Ni nanoparticle-loaded HCSs, hydrogen molecules could be easily dissociated into atomic hydrogen and then chemically adsorbed by the sorbents, leading to an enhanced capacity for storing hydrogen.

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Carbon-Encapsulated Ni Catalysts for CO2 Methanation (탄소층으로 캡슐화된 Ni나노입자 촉매의 CO2 메탄화 반응)

  • Kim, Hye Jeong;Kim, Seung Bo;Kim, Dong Hyun;Youn, Jae-Rang;Kim, Min-Jae;Jeon, Sang Goo;Lee, Gyoung-Ja;Lee, Kyubock
    • Korean Journal of Materials Research
    • /
    • v.31 no.9
    • /
    • pp.525-531
    • /
    • 2021
  • Carbon-encapsulated Ni catalysts are synthesized by an electrical explosion of wires (EEW) method and applied for CO2 methanation. We find that the presence of carbon shell on Ni nanoparticles as catalyst can positively affect CO2 methanation reaction. Ni@5C that is produced under 5 % CH4 partial pressure in Ar gas has highest conversions of 68 % at 350 ℃ and 70 % at 400 ℃, which are 73 and 75 % of the thermodynamic equilibrium conversion, respectively. The catalyst of Ni@10C with thicker carbon layer shows much reduced activity. The EEW-produced Ni catalysts with low specific surface area outperform Ni catalysts with high surface area synthesized by solution-based precipitation methods. Our finding in this study shows the possibility of utilizing carbon-encapsulated metal catalysts for heterogeneous catalysis reaction including CO2 methanation. Furthermore, EEW, which is a highly promising method for massive production of metal nanoparticles, can be applied for various catalysis system, requiring scaled-up synthesis of catalysts.

Ni(OH)2 and NiO Nanostructures: Synthesis, Characterization and Electrochemical Performance

  • Saghatforoush, Lotf Ali;Hasanzadeh, Mohammad;Sanati, Soheila;Mehdizadeh, Robabeh
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2613-2618
    • /
    • 2012
  • Hydrothermal route have been used in different conditions for preparation of $Ni(OH)_2$ nanostructures. The NiO nanoparticles were obtained by calcining the $Ni(OH)_2$ precursor at $450^{\circ}C$ for 2 h. The effect of sodium dodecyl sulfonate (SDS) as surfactant on the morphology and size of $Ni(OH)_2$ nanoparticles were discussed in detail. X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy were used to characterize the products. The growth mechanism of the as-synthesized nanostructures was also discussed in detail based on the experimental results. Coming up, the NiO nanoparticle modified carbon paste electrode was applied to the determination of captopril in aqueous solution.