• Title/Summary/Keyword: Neyman-Scott

Search Result 21, Processing Time 0.03 seconds

A statistical inference for Neyman-Scott Rectangular Pulse model (Neyman-Scott Rectangular Pulse Model에 대한 통계적 추론)

  • Kim, Nam Hee;Kim, Yongku
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.887-896
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulse (NSRP) model is used to model the hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena such as the arrival of a storm or rain cells. In this paper, we proposed approximated likelihood function for the NSRP model and applied the proposed method to precipitation data in Seoul.

A spatial analysis of Neyman-Scott rectangular pulses model using an approximate likelihood function (근사적 우도함수를 이용한 Neyman-Scott 구형펄스모형의 공간구조 분석)

  • Lee, Jeongjin;Kim, Yongku
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1119-1131
    • /
    • 2016
  • The Neyman-Scott Rectangular Pulses Model (NSRPM) is mainly used to construct hourly rainfall series. This model uses a modest number of parameters to represent the rainfall processes and underlying physical phenomena, such as the arrival of storms or rain cells. In NSRPM, the method of moments has often been used because it is difficult to know the distribution of rainfall intensity. Recently, approximated likelihood function for NSRPM has been introduced. In this paper, we propose a hierarchical model for applying a spatial structure to the NSRPM parameters using the approximated likelihood function. The proposed method is applied to summer hourly precipitation data observed at 59 weather stations (Korea Meteorological Administration) from 1973 to 2011.

Direct Method of Parameter Estimation for Neyman-Scott Rectangular Pulse Model (Neyman-Scott Rectangular Pulse 모형의 직접적인 매개변수 추정)

  • Shin, Ju-Young;Jeong, Chang-Sam;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.203-207
    • /
    • 2009
  • Neyman-Scott Rectangular Pulse 모형(NSRPM)은 Poisson process에 기초를 둔 모형으로 수자원분야에서는 강수자료를 생성하는데 널리 쓰이고 있다. NSRPM을 구축하기 위해서는 기존에 관측된 강수 자료를 이용하여 NSRPM의 매개변수를 추정하여야 한다. NSRPM의 매개변수를 추정 시 강수자료의 모멘트와 매개변수로 구성된 모멘트식을 비교하여 매개변수를 추정한다. 기존에 사용된 모멘트를 이용한 NSRPM의 매개변수 추정방법의 경우 매개변수로 구성된 모멘트식을 증명하여야지만 NSRPM의 매개변수를 추정할 수 있다. 또한 증명된 모멘트식이 없는 모멘트 값의 경우 매개변수 추정 시 사용하지 못하는 단점이 있다. 이런 한계점으로 인하여 NSRPM 의 수정 및 추정이 어려워 NSRPM은 널리 사용되지 못하고 있다. 본 연구에서는 매개변수 추정방법의 따른 한계점을 극복하고자 직접적인 매개변수 추정방법을 제안하였다. 직접적인 매개변수 추정방법은 모멘트 식을 이용하지 않고 생성된 자료를 이용하여 직접적으로 매개변수를 추정하는 방법이다. 본 연구의 대상지점은 금강유역의 대전으로 선정하였으며, 사용된 자료는 기상청에서 운영하는 대전 지상관측소 강수자료를 사용하였다. 총 39년의 자료를 이용하여 각 방법을 이용하여 매개변수를 추정하였다. 실험결과 직접적인 추정방법이 기존 매개변수 추정방법보다 더 정확한 매개변수를 추정하는 것을 확인 할 수 있었다.

  • PDF

A development of multisite hourly rainfall simulation technique based on neyman-scott rectangular pulse model (Neyman-Scott Rectangular Pulse 모형 기반의 다지점 강수모의 기법 개발)

  • Moon, Jangwon;Kim, Janggyeong;Moon, Youngil;Kwon, Hyunhan
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.913-922
    • /
    • 2016
  • A long-term precipitation record is typically required for establishing the reliable water resources plan in the watershed. However, the observations in the hourly precipitation data are not always consistent and there are missing values within the time series. This study aims to develop a hourly rainfall simulator for extending rainfall data, based on the well-known Neyman-Scott Rectangular Pulse Model (NSRPM). Moreover, this study further suggests a multisite hourly rainfall simulator to better reproduce areal rainfalls for the watershed. The proposed model was validated with a network of five weather stations in the Uee-stream watershed in Seoul. The proposed model appeared a reasonable result in terms of reproducing most of the statistics (i.e. mean, variance and lag-1 autocovariance) of the rainfall time series at various aggregation levels and the spatial coherence over the weather stations.

Study of Direct Parameter Estimation for Neyman-Scott Rectangular Pulse Model (Neyman-Scott 구형 펄스모형의 직접적인 매개변수 추정연구)

  • Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.1017-1028
    • /
    • 2009
  • NSRPM (Neyman-Scott Rectangular Pulse Model) is one of the common model for generating future precipitation time series in stochastical hydrology. There are 5 parameters to compose the NSRPM model for generating precipitation time series. Generally parameter estimation using moment has some problems related with increased objective functions and shows different results in accordance with random variable generating models. In this study, direct parameter estimation method was proposed to cover with disadvantages of parameter estimation using moment. To apply the direct parameter estimation, generating stochastical data variance in accordance with numbers of precipitation events of NSRPM was done. Both kinds of methods were applied at the Cheongju gauge station data. Precipitation time series were generated using 4 different random variable generator, and compared with observed time series to check the accuracies. As a results, direct method showed more stable and better results.

Uncertainty Analysis of Neyman-Scott Rectangular Pulse Model(NSRPM) Based on Bayesian Modelling (Bayesian 기법을 활용한 Neyman-Scott Rectangular Pulse 모형의 불확실성 분석)

  • Kim, Jang-Gyeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.79-79
    • /
    • 2017
  • 강우 자료는 수공구조물 설계목적에 따라 다양한 시공간적 범주가 필요하다. 그러나 시간단위 이하 시계열 강우자료는 미계측 유역 및 관측연한 등의 제약으로 연속적인 시계열을 확보하는데 어려움이 있다. 이러한 점에서 포아송분포 기반 강우발생모형은 강우시계열의 통계적 특성을 나타내는 5개 매개변수로 다양한 시간 범주의 연속강우시계열을 생성할 수 있다는 장점이 있다. 강우발생모의 핵심은 과거자료의 통계특성을 효과적으로 복원할 수 있어야 하며, 다양한 기상학적 특성들 또한 적절하게 모의될 수 있어야 한다는 점이다. 즉, 다음과 같은 기준으로 모의적합성을 평가할 수 있다. 첫째, 지속기간별 관측시계열과 모의시계열의 통계적 유사성을 평가하고, 둘째, 확률분포를 따르는 각 매개변수의 사후분포를 제시하여 불확실성을 정량화하고, 셋째, 추정된 매개변수의 물리적 범위의 적정성 검토가 필요하다. 본 연구에서는 강우발생모형으로 널리 알려진 Neyman-Scott Rectangular Pulse(NSRP) 모형과 Bayesian 모형을 연계한 Bayesian NSRP 모형 개발을 통해 강우관측소 전지점에 대한 매개변수 지도를 제시하고자 한다. 본 연구결과는 임의 유역에 대한 강우발생 시나리오를 제공하여, 다양한 형태의 유출결과를 도출할 수 있으며, 무엇보다 유출결과를 확률적으로 평가할 수 있다는 장점이 있다.

  • PDF

Analysis on the Variability of Rainfall at the Seoul Station during Summer Season Using the Variability of Parameters of a Stochastic Rainfall Generation Model (추계학적 강우모형의 매개변수 변동을 통한 서울지역 여름철 강우 변동특성 분석)

  • Cho, Hyungon;Kim, Gwangseob;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.8
    • /
    • pp.693-701
    • /
    • 2014
  • In this study a stochastic rainfall generation model is used to analyze the structural variability of rainfall events since it has limitations in the traditional approach of measuring rainfall variability according to different durations. The NSRPM(Neyman-Scott Rectangular Pulse Model) is a stochastic rainfall generation model using a point process with 5 model parameters which is widely used in hydrologic fields. The five model parameters have physical meaning associated with rainfall events. The model parameters were estimated using hourly rainfall data from 1973 to 2011 at Seoul stations. The variability of model parameter estimates was analyzed and compared with results of traditional analysis.

A Study of New Modified Neyman-Scott Rectangular Pulse Model Development Using Direct Parameter Estimation (직접적인 매개변수 추정방법을 이용한 새로운 수정된 Neyman-Scott 구형펄스모형 개발 연구)

  • Shin, Ju-Young;Joo, Kyoung-Won;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Direct parameter estimation method is verified with various models based on Neyman-Scott rectangular pulse model (NSRPM). Also, newly modified NSRPM (NMSRPM) that uses normal distribution is developed. Precipitation data observed by Korea Meteorological Administration (KMA) for 47 years is applied for parameter estimation. For model performance verification, we used statistics, wet ratio and precipitation accumulate distribution of precipitation generated. The comparison of statistics indicates that absolute relative error (ARE)s of the results from NSRPM and modified NSRPM (MNSRPM) are increasing on July, August, and September and ARE of NMNSRPM shows 10.11% that is the smallest ARE among the three models. NMNSRPM simulates the characteristics of precipitation statistics well. By comparing the wet ratio, MNSRPM shows the smallest ARE that is 16.35% and by using the graphical analysis, we found that these three models underestimate the wet ratio. The three models show about 2% of ARE of precipitation accumulate probability. Those results show that the three models simulate precipitation accumulate probability well. As the results, it is found that the parameters of NSRPM, MNSRPM and NMNSRPM are able to be estimated by the direct parameter estimation method. From the results listed above, we concluded that the direct parameter estimation is able to be applied to various models based on NSRPM. NMNSRPM shows good performance compared with developed model-NSRPM and MNSRPM and the models based on NSRPM can be developed by the direct parameter estimation method.

Development of Stochastic Rainfall Downscaling using Bayesian Neyman-Scott Rectangular Pulse Model(NSRPM) (Bayesian NSRP 모형을 이용한 추계학적 Downscaling 기법 개발)

  • Kim, Jang-Gyeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.9-9
    • /
    • 2018
  • 추계학적 강우생성모형 중 포아송 클러스터(Poisson Cluster) 모형은 단일지점에 대하여 시간강우량의 관측연한 문제점을 해결하기 위한 강우모형으로 강우 단계별 계층적 구조를 이해하는데 유용한 모형이다. 특히 강우 특성을 계절, 지역 등과 같이 비교하는 기준에 따라 5~6개의 비교적 적은 매개변수들로 모의 강우시계열을 생성할 수 있다는 점에서 장기간 강우분석에 필요한 관측연한 문제를 보완할 수 있다. 그러나 매개변수 최적해가 수렴되지 않는 사례가 많고, 매개변수들이 강우의 물리적 특성을 반영하는 것에 비해 내포된 불확실성에 관한 연구는 미흡하다. 본 연구에서는 포아송 클러스터 강우생성모형 중 Neyman-Scott Rectangular Pulse(NSRP) 모형을 Bayesian 모형과 연계한 Bayesian NSRP 모형을 개발하여 매개변수간 물리적 상관성을 고려한 최적화 기법을 개발하였다. Bayesian 모형은 물리적 범위가 다른 매개변수간의 결합확률분포를 산정하여 사후분포(posterior)를 추정하므로 매개변수 최적화와 불확실성 정량화 문제를 동시에 해결할 수 있다. 최종적으로 Bayesian NSRP 모형에 기후변화 시나리오의 통계적 특성을 고려한 시간단위 강우시계열 생성 모의 기법의 활용 가능성을 평가하고자 한다.

  • PDF