• Title/Summary/Keyword: Next generation

Search Result 5,313, Processing Time 0.031 seconds

Design and Implementation of Virtual Reality Prototype Crane Training System using Unity 3D (Unity 3D를 이용한 가상현실 프로토타입 크레인 훈련 시스템 설계 및 구현)

  • Heo, Seok-Yeol;Kim, Geon-Young;Choi, Jung-Bin;Park, Ji-Woo;Jeon, Min-Ji;Lee, Wan-Jik
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.569-575
    • /
    • 2022
  • It is most desirable to build a crane training program in the same evvironment as the actual port, but it has problem such as time constraint and cost. To overcome these limitations, next-generation training programs based on AR/VR are receiving a lot of attention. In this paper, a prototype of a harbor crane training system based on virtual reality was designed and implemented. The system implemented in this paper consists of two elements: an Arduino-based IoT terminal and an HMD equipped with a Unity application program. The IoT terminal consists of 2 controllers, 2 toggle switches, and 8 button switches to process data generated according to the user's operation. The HMD uses Oculus Quest2 and is connected to the IoT terminal through wireless communication to provide user convenience. The training system implemented in this paper is expected to provide trainees with a training environment independent of time and place through virtual reality and to save time and money.

A Study on Multi-Signature Scheme for Efficient User Authentication in Metaverse (메타버스 환경에서의 효율적인 사용자 인증을 위한 다중 서명 기법 연구)

  • Jae Young Jang;Soo Yong Jeong;Hyun Il Kim;Chang Ho Seo
    • Smart Media Journal
    • /
    • v.12 no.2
    • /
    • pp.27-35
    • /
    • 2023
  • Currently, online user authentication is perform using joint certificates issued by accredited certification authorities and simple certificates issued by private agency. In such a PKI(Public Key Infrastructure) system, various cryptographic technologies are used, and in particular, digital signatures are used as a core technology. The digital signature scheme is equally used in DID(Decentralized Identity), which is attracting attention to replace the existing centralized system. As such, the digital signature-based user authentication used in current online services is also applied in the metaverse, which is attracting attention as the next-generation online world. Metaverse, a compound word of "meta," which means virtual and transcendent, and "universe," means a virtual world that includes the existing online world. Due to various developments of the metaverse, it is expted that new authentication technologies including biometric authentication will be used, but existing authentication technologies are still being used. Therefore, in this study, we study digital signature scheme that can be efficiently used for user authentication in the developing metaverse. In particular, we experimentally analyze the effectiveness of ECDSA, which is currently used as a standard for digital signatures, and Schnorr signatures, which can quickly verify a large amount of signatures.

Furnace Annealing Effect on Ferroelectric Hf0.5Zr0.5O2 Thin Films (강유전체 Hf0.5Zr0.5O2 박막의 퍼니스 어닐링 효과 연구)

  • Min Kwan Cho;Jeong Gyu Yoo;Hye Ryeon Park;Jong Mook Kang;Taeho Gong;Yong Chan Jung;Jiyoung Kim;Si Joon Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • The ferroelectricity in Hf0.5Zr0.5O2 (HZO) thin films is one of the most interesting topics for next-generation nonvolatile memory applications. It is known that a crystallization process is required at a temperature of 400℃ or higher to form an orthorhombic phase that results in the ferroelectric properties of the HZO film. However, to realize the integration of ferroelectric HZO films in the back-end-of-line, it is necessary to reduce the annealing temperature below 400℃. This study aims to comprehensively analyze the ferroelectric properties according to the annealing temperature (350-500℃) and time (1-5 h) using a furnace as a crystallization method for HZO films. As a result, the ferroelectric behaviors of the HZO films were achieved at a temperature of 400℃ or higher regardless of the annealing time. At the annealing temperature of 350℃, the ferroelectric properties appeared only when the annealing time was sufficiently increased (4 h or more). Based on these results, it was experimentally confirmed that the optimization of the annealing temperature and time is very important for the ferroelectric phase crystallization of HZO films and the improvement of their ferroelectric properties.

4-F-PCP, a Novel PCP Analog Ameliorates the Depressive-Like Behavior of Chronic Social Defeat Stress Mice via NMDA Receptor Antagonism

  • Darlene Mae D., Ortiz;Mikyung, Kim;Hyun Jun, Lee;Chrislean Jun, Botanas;Raly James Perez, Custodio;Leandro, Val Sayson;Nicole, Bon Campomayor;Chaeyeon, Lee;Yong Sup, Lee;Jae Hoon, Cheong;Hee Jin, Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.227-239
    • /
    • 2023
  • Major depressive disorder is a leading cause of disability in more than 280 million people worldwide. Monoamine-based antidepressants are currently used to treat depression, but delays in treatment effects and lack of responses are major reasons for the need to develop faster and more efficient antidepressants. Studies show that ketamine (KET), a PCP analog, produces antidepressant effects within a few hours of administration that lasts up to a week. However, the use of KET has raised concerns about side effects, as well as the risk of abuse. 4 -F-PCP analog is a novel PCP analog that is also an NMDA receptor antagonist, structurally similar to KET, and might potentially elicit similar antidepressant effects, however, there has been no study on this subject yet. Herein, we investigate whether 4-F-PCP displays antidepressant effects and explored their potential therapeutic mechanisms. 4-F-PCP at 3 and 10 mg/kg doses showed antidepressant-like effects and repeated treatments maintained its effects. Furthermore, treatment with 4-F-PCP rescued the decreased expression of proteins most likely involved in depression and synaptic plasticity. Changes in the excitatory amino acid transporters (EAAT2, EAAT3, EAAT4) were also seen following drug treatment. Lastly, we assessed the possible side effects of 4-F-PCP after long-term treatment (up to 21 days). Results show that 4-F-PCP at 3 mg/kg dose did not alter the cognitive function of mice. Overall, current findings provide significant implications for future research not only with PCP analogs but also on the next generation of different types of antidepressants.

Electrochemical Ion Separation Technology for Carbon Neutrality (탄소중립을 지향하는 전기화학적 이온 분리(EIONS) 기술)

  • Hwajoo Joo;Jaewuk Ahn;Sung-il Jeon;Jeyong Yoon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.331-346
    • /
    • 2023
  • Recently, green processes that can be directly used in an energy-efficient and electrified society to achieve carbon neutrality are attracting attention. Existing heat and pressure-based desalination technologies that consume tremendous amounts of energy are no exception, and the growth of next-generation electrochemical-based desalination technologies is remarkable. One of the most representative electrochemical desalination technologies is electrochemical ion separation (EIONS) technology, which includes capacitive desalination (CDI) and battery desalination (BD) technology. In the research field of EIONS, various system applications have been developed to improve system performance, such as capacity and cyclability. However, it is very difficult to understand the meaning and novelty of these applications immediately because there are only a few papers that summarize the research background for domestic readers. Therefore, in this review paper, we aim to describe the technological advances and individual characteristics of each system in clear and specific detail about the latest EIONS research. The driving principle, research background, and strengths and weaknesses of each EIONS system are explained in order. In addition, this paper concluded by suggesting the future development and research direction of EIONS. Researchers who are just beginning out in EIONS research can also benefit from this study because it will help them understand the research trend.

Improvement of Charge Carrier Mobility of Organic Field-Effect Transistors through The Surface Energy Control (표면 에너지 제어를 통한 유기 전계 효과 트랜지스터의 전하 이동도 향상)

  • Seokkyu Kim;Kwanghoon Kim;Dongyeong Jeong;Yongchan Jang;Minji Kim;Wonho Lee;Eunho, Lee
    • Journal of Adhesion and Interface
    • /
    • v.24 no.2
    • /
    • pp.64-68
    • /
    • 2023
  • Organic field-effect transistors (OFETs) are attracting attention in the field of next-generation electronic devices, and they can be fabricated on a flexible substrate using an organic semiconductor as a channel layer. In particular, DPP-based semiconducting conjugated polymers are actively used because they have higher charge carrier mobility than other organic semiconductors, but they are still lower than inorganic semiconductors, so various studies are being conducted to improve the charge carrier mobility. In this study, the charge carrier mobility is improved by controlling the surface energy of the substrate by forming self-assembled monolayers (SAMs). As the surface energy of the substrate is controlled by the SAMs, the crystallinity increases, thereby improving the charge carrier mobility by 14 times from 3.57×10-3 cm2V-1s-1 to 5.12×10-2 cm2V-1s-1

Reinforcement of Refrigerant Gas Regulations in EU and Implications for Carbon Neutrality (EU의 냉매가스 규제 강화와 탄소중립에의 시사점)

  • Dong Koo Kim
    • Environmental and Resource Economics Review
    • /
    • v.31 no.4
    • /
    • pp.777-799
    • /
    • 2022
  • This study examined the latest EU regulatory strengthening trends for refrigerant gases with very large global warming potential (GWP) and derived implications for carbon neutrality. The European Commission recently unveiled an amendment that significantly strengthens the F-gas Regulation. This study presented the meaning of the main contents related to refrigerants in the amendment by comparing them with the current regulations. The main contents of the amendment include drastically reducing the maximum amount of HFCs that can be placed on the market, strengthening regulations related to HFCs allocation, adding products and equipment that use high GWP refrigerants, adding regulated F-gas and updating the GWP of existing gases, and other stricter regulatory designs. This movement of the EU will affect the policy stance of advanced countries such as the United States and Japan, and Korea's policy will also be further strengthened. Therefore, it will be inevitable for related industries to change to next-generation refrigerant gas. Meanwhile, this study also analyzed the latest policy trends related to per- and polyfluoralkyl substances (PFAS) regulation, which were not noted in previsou studies on refrigerants and F-gas. If PFAS's registration of REACH restricted substances, which are being promoted by five European countries, is made, it will have a very big impact on the industry regarding refrigerant gas. In addition, it will be inevitable to thoroughly review each country's greenhouse gas reduction strategies related to F-gas materials, including refrigerants.

Development and Evaluation of a Next-Generation Sequencing Panel for the Multiple Detection and Identification of Pathogens in Fermented Foods

  • Dong-Geun Park;Eun-Su Ha;Byungcheol Kang;Iseul Choi;Jeong-Eun Kwak;Jinho Choi;Jeongwoong Park;Woojung Lee;Seung Hwan Kim;Soon Han Kim;Ju-Hoon Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.1
    • /
    • pp.83-95
    • /
    • 2023
  • These days, bacterial detection methods have some limitations in sensitivity, specificity, and multiple detection. To overcome these, novel detection and identification method is necessary to be developed. Recently, NGS panel method has been suggested to screen, detect, and even identify specific foodborne pathogens in one reaction. In this study, new NGS panel primer sets were developed to target 13 specific virulence factor genes from five types of pathogenic Escherichia coli, Listeria monocytogenes, and Salmonella enterica serovar Typhimurium, respectively. Evaluation of the primer sets using singleplex PCR, crosscheck PCR and multiplex PCR revealed high specificity and selectivity without interference of primers or genomic DNAs. Subsequent NGS panel analysis with six artificially contaminated food samples using those primer sets showed that all target genes were multi-detected in one reaction at 108-105 CFU of target strains. However, a few false-positive results were shown at 106-105 CFU. To validate this NGS panel analysis, three sets of qPCR analyses were independently performed with the same contaminated food samples, showing the similar specificity and selectivity for detection and identification. While this NGS panel still has some issues for detection and identification of specific foodborne pathogens, it has much more advantages, especially multiple detection and identification in one reaction, and it could be improved by further optimized NGS panel primer sets and even by application of a new real-time NGS sequencing technology. Therefore, this study suggests the efficiency and usability of NGS panel for rapid determination of origin strain in various foodborne outbreaks in one reaction.

Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production (수소 및 탄소소재 생산을 위한 메탄 유동층 촉매분해 기술의 최근 동향)

  • Keon Bae;Kang Seok Go;Woohyun Kim;Doyeon Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.175-188
    • /
    • 2023
  • Global interest in hydrogen energy is increasing as an eco-friendly future energy that can replace fossil fuels. Accordingly, a next-generation hydrogen production technology using microorganisms, nuclear power, etc. is being developed, while a lot of time and effort are still required to overcome the cost of hydrogen production based on fossil fuels. As a way to minimize greenhouse gas emissions in the hydrocarbon-based hydrogen production process, methane direct decomposition technology has recently attracted attention. In order to improve the economic feasibility of the process, the simultaneous production of value-added carbon materials with hydrogen can be one of the most essential aspects. For that purpose, various studies on catalysis related to the quality and yield of high-value carbon materials such as carbon nanotubes (CNTs). In terms of process technology, a number of the research and development of fluidized-bed reactors capable of continuous production and improved gas-solid contact efficiency has been attempted. Recently, methane direct decomposition technology using a fluidized bed has been developed to the extent that it can produce 270 kg/day of hydrogen and 1000 kg/day of carbon. Plus, with the development of catalyst regeneration, separation and recirculation technologies, the process efficiency can be further improved. This review paper investigates the recent development of catalysts and fluidized bed reactor for methane direct pyrolysis to identify the key challenges and opportunities.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.