• Title/Summary/Keyword: Newtonian Fluid

Search Result 308, Processing Time 0.025 seconds

Analysis of Blood Flow after Coil Embolization in Anterior Cerebral Artery Aneurysm (전산해석을 통한 전대뇌동맥류 코일 색전술 후 혈류 유동 분석)

  • Donghwi Kim;Jeonghoon Yoon;Changyong Lee;Junwoo Jae;Dongmin Kim;Youngoh Bae;Jinyul Hwang
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.80-93
    • /
    • 2023
  • We performed numerical simulations of blood flow in an arterial cerebral artery aneurysm to investigate the hemodynamic behavior after coil embolization. A patient-specific model was created based on CTA data. We also conducted the coil embolization simulation to obtain the coil placement within the aneurysm. Blood was assumed to be an incompressible Newtonian fluid, and both the vessel and coil were considered rigid walls. The pulsatile boundary condition was applied at the inlet, and the outflow boundary conditions were used at the outlets. Our findings demonstrated that the coil embolization significantly reduces the blood volume flowrate entering the aneurysm by effectively blocking the inflow jet, leading to a decrease in both TAWSS and WSS, especially at the systolic peak in the impingement zone. While several high OSI regions disappeared over the aneurysm surface, we observed high OSI regions with a relatively small area where the coil did not completely occlude the aneurysm. Overall, these results quantitatively analyzed the effectiveness of coil embolization by focusing on hemodynamic indicators, potentially preventing aneurysm rupture. The present work could contribute to the development of patient-specific coil embolization.

Experimental Study of Natural Convection for Magnetic Fluids in Annular Pipes Under the Influence of External Magnetic Fields (이중원관내 자성유체의 외부자장에 대한 자연대류의 실험적 연구)

  • 서이수;박정우;이준희
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.6
    • /
    • pp.245-249
    • /
    • 2001
  • Natural convection of a magnetic fluid is different from that of Newtonian fluids because magnetic body force exists in an addition to gravity and buoyancy. In this paper, natural convection of a magnetic fluids (W-40) in annular pipes was studied by experimentally. Inside wall was kept at a constant temperature (25 $^{\circ}C$), and outside wall was also held at a constant but lower temperature (20 $^{\circ}C$). The magnetic fields of various magnitude were applied up. This study has resulted in the following fact that the natural convection of a magnetic fluids was controlled by the direction and intensity of the magnetic fields.

  • PDF

An Study on the Transitional Flows in a Concentric Annulus with Rotating Inner Cylinder (안쪽축이 회전하는 환형관내 천이 유동 연구)

  • Hwang, Young-Kyu;Kim, Young-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.45-50
    • /
    • 2001
  • This experimental study concerns the characteristics of a transitional flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one rotating. The pressure losses and skin-friction coefficients have been measured for the fully developed flow of a 0.2 % aqueous solution of sodium carbomethyl cellulose (CMC) at a inner cylinder rotational speed of $0{\sim}600$ rpm. The transitional flow has been examined by the measurement of pressure losses, to reveal the relation of the Reynolds numbers with the skin-friction coefficients, in the laminar and transitional flow regimes. The occurrence of transition has been checked by the gradient change of pressure losses and skin-friction coefficient with respect to the Reynolds numbers. The increasing rate of skin-friction coefficient due to the rotation is uniform for laminar flow regime, whereas it is suddenly reduced for transitional flow regime and, then, it is gradually declined for turbulent flow regime. Consequently, the critical(axial-flow) Reynolds number decrease as the rotational speed increases. Thus, the rotation of inner cylinder promotes the early occurrence of transition due to the onset of taylor vortices.

  • PDF

The Effects of Packing and Cooling Stages on the Molded Parts in Injection Molding Process (사출 성형시 보압 및 냉각 과정이 성형품에 미치는 영향)

  • 구본흥;신효철;이호상
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1150-1160
    • /
    • 1993
  • The behavior of polystyrene in the strip cavity during the packing and cooling stages for an injection molding process is examined numerically. The mathematical model is based on the unified post-filling model and finite element/finite difference methods are used to solve simultaneously the continuity, momentum and energy equations coupled to an equation of state. Simulated results show that the density of the molded parts is lower in the core than at the skin, and that the hotter the melt or the higher the packing pressure, the higher the density in the core. The density variation during the packing stage comes up to 50% compared with the total density variation. Also, the density variation after gate sealing and the effect of cooling rate on the equation of state are negligible.

Three-Dimensional Mold Filling Simulation for Multi-layered Preform in Resin Transfer Molding (다층 예비성형체에 대한 삼차원 충진해석)

  • Yang, Mei;Song, Young-Seok;Youn, Jae-Roun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.137-140
    • /
    • 2005
  • Resin transfer molding (RTM) is one of the most popular processes for producing fiber reinforced polymer composites. In the manufacture of complex thick composite structures, analysis on flow front advancement on the resin impregnating the multi-layered fiber preform is helpful for the optimization of the process. In this study, three-dimensional mold filling simulation of RTM is carried out by using CVFEM (Control Volume Finite Element Method). On the assumption of isothermal flow of Newtonian fluid, Darcy’s law and continuity equation are used as governing equations. Different permeability tensors employed in each layer are obtained by experiments. Numerically predicted flow front is compared with experimental one in order to validate the numerical results. Flow simulations are conducted in the two mold geometries, rectangular plate and hollow cylinder. Permeability tensor of each layer preform in Cartesian coordinate system is transformed to cylinder coordinates system so that the flow within the multi-layered preforms of the hollow cylinder can be calculated exactly. Our emphasis is on the three dimensional flow analysis for circular three-dimensional braided preform, which shows outstanding mechanical properties such as high impact strength and toughness compared with other conventional two-dimensional laminar-structured preforms.

  • PDF

Dynamic Stability and Response Analysis of Piping System with Internal Flow (내부에 유체가 흐르는 파이프계의 동적안정성 및 응답해석)

  • 이우식;박철희;홍성철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1861-1871
    • /
    • 1991
  • In this study, the piping system conveying unsteady flow is considered. The effects of coupling between the pipe motion and the velocity and pressure of fluid are included for the dynamic stability and response analysis of the piping system. The dynamic equations for a piping system are derived by Newtonian dynamics. For the momentum and continuity equations, the concept of moving control volume is applied. Thus, the governing equations derived herein are valid for the applications to the vibration problems occurred when a piping system starts up or shuts down and also when the valves and pumps operate. For a simply supported straight pipe, the stability analysis is conducted for various nondimensional parameters. The dynamic responses, in both stable and unstable region of stability chart, are numerically tested by the use of central difference method.

Numerical Study of Internal Flow in Twin Screw Extruder and Its Mixing Performance Analysis (이축 스크루 압출기내 유동의 수치 해석과 혼합 성능 분석)

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.32-41
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow in the melt conveying zone in co-rotating and counter-rotating screw extruder system with the commercial code, STAR-CD, and compared the mixing performance with respect to screw speed and rotating direction. The viscosity of fluid was described by power-law model. The dynamics of mixing was studied numerically by tracking the motion of particles in a twin screw extruder system. The extent of mixing was characterized in terms of the residence time distribution and average strain. The results showed that high screw speed decreases the residence time but increases the shear rate. Therefore higher screw speed increases the strain and has better mixing performance. Counter-rotating screw extruder system and co-rotating screw extruder has the similar shear rate with the same screw speed in spite of different rotating direction. However, the counter-rotating screw has good mixing performance, which is resulted from longer residence time than that of co-rotating screw extruder.

Development of viscosity sensor using surface acoustic wave (탄성 표면파를 이용한 점도 센서의 개발)

  • Chong, Woo-Suk;Kim, Gi-Beum;Kang, Hyung-Sub;Hong, Chul-Un
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2008
  • The purpose of this study is to materialize the viscosity sensor by using the SH-SAW sensor of which the center frequency is operated at higher than 50 MHz. In order to measure the viscosity, SAW sensor of which the center frequency is operated at 100 MHz is developed. By using the developed sensor, phase shift, delay time, insertion loss, and frequency variation are measured at different viscosity. The result shows that the phase shift difference between the viscosity variations is such that the difference between the distilled water and the 100 % glycerol solution is approximately $45^{\circ}$, the change of the insertion loss is approximately 9 dB, and the difference of frequency variation is approximately 5.9 MHz. Therefore, it is shown that viscosity of unknown solution can be measured with the surface acoustic wave sensor.

Computer Simulation of Ink Flow in the Conventional Gravure Cell (컨벤셔널 그라비어의 셀 내부에서 잉크유동 시뮬레이션)

  • Lim, Soo-Man;Youn, Jong-Tae;Kim, Kwang-Heui
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.25 no.1
    • /
    • pp.109-120
    • /
    • 2007
  • In gravure printing, the amount of ink fill into the cells has a great effect on the qualities of final printed products. And printability of final products is determined by every kinds of variables. Ink transfer process is not verified scientifically because gravure cell is small and printing speed is rapid. In order to understand the ink transfer mechanism of conventional gravure, this study is performed using the Computational Fluid Dynamics Evaluation. Flow-3D simulation software is used for considering of Newtonian flow. Among the various factors, this study have dealt with gravure cell types used computer simulation in order to define distinctive features in ink flow in the cell. The results of simulation, it defined the distribution of pressure, speed, stream function, viscosity, shear rate, surface tension during the gravure printing. It is founded out the difficulties and characteristics according to the printing speed and viscosity of Gravure ink.

  • PDF

Three Dimensional FEM Simulation for Spinning of Non-circular Fibers

  • Kim, Heejae;Chung, Kwansoo;Youn, Jae-Ryoun
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.37-44
    • /
    • 2000
  • A finite element method is employed fer a flow analysis of the melt spinning process of a non-circular fiber, a PET(polyethylene terephthalate) filament. The flow field is divided into two regions of die channel and spin-line. A two dimensional analysis is used for the flow within the die channel and a three dimensional analysis fur the flow along the spin-line. The Newtonian fluid is assumed for the PET melt and material properties are considered to be constant except for the viscosity. Effects of gravitation, air drag force, and surface tension are neglected. Although the spin-line length is 4.5 m only five millimeters from the spinneret are evaluated as the domain of the analysis. Isothermal and non-isothermal cases are studied fer the flow within the die channel. The relationship between the mass flow rate and the pressure gradient is presented for the two cases. Three dimensional flow along the spin-line is obtained by assuming isothermal conditions. It is shown that changes in velocity and cross-sectional shape occur mostly in the region of 1mm from the die exit.

  • PDF