• 제목/요약/키워드: Newton-Raphson algorithm

검색결과 173건 처리시간 0.029초

Newton-Raphson 방식의 제곱근 근사를 위한 초기값의 최적화 (Initial Point Optimization for Square Root Approximation based on Newton-Raphson Method)

  • 최창순;이진용;김영록
    • 대한전자공학회논문지SD
    • /
    • 제43권3호
    • /
    • pp.15-20
    • /
    • 2006
  • 본 논문은 Newton-Raphson 방법을 기반으로 하는 table-driven 알고리듬에 대해 연구되었다. 특히 본 논문에서는 Newton-Raphson 방법을 이용한 제곱근 근사에 중점을 두었다. Newton-Raphson방법에서 최적화된 초기근사해를 구하게 되면 제곱근 근사의 정확성을 높일 수 있으며, 연산 속도 또한 빨라지게 된다. 그러므로 Newton-Raphson 알고리듬에서 초기근사해를 어떻게 결정하느냐하는 것이 전체적인 알고리듬의 성능을 평가하게 되는 중요한 이슈이다. 본 논문에서는 Newton-Raphson 알고리듬의 초기 근사해를 기하평균을 기준으로 테이블에 저장, 연산의 속도와 최대 오차율을 줄일 수 있음을 확인하였다.

반복계산에 의한 고유치 해석 알고리즘의 2차 뉴튼랩슨법으로의 정식화 (A Formulation of Iterative Eigenvalue Analysis Algorithm to the Second Order Newton Raphson Method)

  • 김덕영
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제51권3호
    • /
    • pp.127-133
    • /
    • 2002
  • This paper presents an efficient improvement of the iterative eigenvalue calculation method of the AESOPS algorithm. The intuitively and heuristically approximated iterative eigenvalue calculation method of the AESOPS algorithm is transformed to the Second Order Newton Raphson Method which is generally used in numerical analysis. The equations of second order partial differentiation of external torque, terminal and internal voltages are derived from the original AESOPS algorithm. Therefore only a few calculation steps are added to transform the intuitively and heuristically approximated AESOPS algorithm to the Second Order Newton Raphson Method, while the merits of original algorithm are still preserved.

Newton-Raphson법 기반의 적응 망각율을 갖는 RLS 알고리즘에 의한 원격센서시스템의 시변파라메타 추정 (Time Variant Parameter Estimation using RLS Algorithm with Adaptive Forgetting Factor Based on Newton-Raphson Method)

  • 김경엽;이준탁
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2007년도 춘계학술대회 학술발표 논문집 제17권 제1호
    • /
    • pp.435-439
    • /
    • 2007
  • This paper deals with RLS algorithm using Newton-Raphson method based adaptive forgetting factor for a passive telemetry RF sensor system in order to estimate the time variant parameter to be included in RF sensor model. For this estimation with RLS algorithm, phasor typed RF sensor system modelled with inductive coupling principle is used. Instead of applying constant forgetting factor to estimate time variant parameter, the adaptive forgetting factor based on Newton-Raphson method is applied to RLS algorithm without constant forgetting factor to be determined intuitively. Finally, we provide numerical examples to evaluate the feasibility and generality of the proposed method in this paper.

  • PDF

가변 시간 K차 뉴톤-랍손 부동소수점 나눗셈 (A Variable Latency K'th Order Newton-Raphson's Floating Point Number Divider)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제9권5호
    • /
    • pp.285-292
    • /
    • 2014
  • The commonly used Newton-Raphson's floating-point number divider algorithm performs two multiplications in one iteration. In this paper, a tentative K'th Newton-Raphson's floating-point number divider algorithm which performs K times multiplications in one iteration is proposed. Since the number of multiplications performed by the proposed algorithm is dependent on the input values, the average number of multiplications per an operation in single precision and double precision divider is derived from many reciprocal tables with varying sizes. In addition, an error correction algorithm, which consists of one multiplication and a decision, to get exact result in divider is proposed. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number divider unit. Also, it can be used to construct optimized approximate reciprocal tables.

K차 뉴톤-랍손 부동소수점수 N차 제곱근 (Kth order Newton-Raphson's Floating Point Number Nth Root)

  • 조경연
    • 대한임베디드공학회논문지
    • /
    • 제13권1호
    • /
    • pp.45-51
    • /
    • 2018
  • In this paper, a tentative Kth order Newton-Raphson's floating point number Nth root algorithm for K order convergence rate in one iteration is proposed by applying Taylor series to the Newton-Raphson root algorithm. Using the proposed algorithm, $F^{-1/N}$ and $F^{-(N-1)/N}$ can be computed from iterative multiplications without division. It also predicts the error of the algorithm iteration and iterates only until the predicted error becomes smaller than the specified value. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number Nth root unit.

강성등가하중을 이용한 새로운 비선형해석 알고리즘 (New Nonlinear Analysis Algorithm Using Equivalent Load for Stiffness)

  • 김영민;김치경;김태진
    • 한국전산구조공학회논문집
    • /
    • 제20권6호
    • /
    • pp.731-742
    • /
    • 2007
  • 본 연구에서는 새로운 비선형해석 알고리즘인 적응형 Newton-Raphson 반복기법을 제안한다. 제안된 기법은 기존 Newton-Raphson 기법을 근간으로 적응형 부구조물화 기법을 이용하여 강성등가하중을 구하고, 이미 역행렬이 계산되어 있는 초기강성행렬에 강성등가하중을 적용하여 보정변위를 구하는 것으로 요약된다. 제안된 알고리즘의 가장 큰 특징은 하중 구간의 수에 관계없이 구조물 강성행렬에 대한 역행렬 계산을 단 한번만 수행한다는 것이다. 제안된 기법의 효율성은 강성행렬 및 역행렬 계산 후 부재강성행렬이 변경된 부재들이 연결된 자유도 수와 전체 자유도 수의 비율에 직접 관계된다. 이 비율에 따라 제안된 기법을 기존 비선형해석 기법과 보완적으로 사용함으로써 전체 비선형해석 효율을 향상시킬 수 있다.

스텍트럴요소 모델과 Newton-Raphson 법을 이용한 구조손상규명 (Structural Damage Identification by Using the Spectral Element Model and the Newton-Raphson Method)

  • 김정수;권경수;이우식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.921-926
    • /
    • 2004
  • In this paper, a nonlinear structural damage identification algorithm is derived by taking into account the non-linearity of damage. The structural damage identification analyses are conducted by using the direct method and the Newton-Raphson method. It is found that, the Newton-Raphson method in general provides the better damage identification results when compared with the results obtained by the direct method.

  • PDF

Shape and location estimation using prior information obtained from the modified Newton-Raphson method

  • Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Lee, Y.J.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.570-574
    • /
    • 2003
  • In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.

  • PDF