• Title/Summary/Keyword: Newton iterative

Search Result 148, Processing Time 0.028 seconds

THE BINOMIAL METHOD FOR A MATRIX SQUARE ROOT

  • Kim, Yeon-Ji;Seo, Jong-Hyeon;Kim, Hyun-Min
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.511-519
    • /
    • 2013
  • There are various methods for evaluating a matrix square root, which is a solvent of the quadratic matrix equation $X^2-A=0$. We consider new iterative methods for solving matrix square roots of M-matrices. Particulary we show that the relaxed binomial iteration is more efficient than Newton-Schulz iteration in some cases. And we construct a formula to find relaxation coefficients through statistical experiments.

NEW CONVERGENCE CONDITIONS OF SECANT METHODS VIA ALPHA THEORY

  • KIM, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.5 no.2
    • /
    • pp.101-115
    • /
    • 2001
  • Recent theoretical analysis of numerical methods for solving nonlinear systems of equations is represented by alpha theory of Newton method developed Smale et al. The theory was extended to Secant method by providing convergence conditions by Yakoubsohn which the Secant method is treated as an operator defined for analytical functions. We use Secant methods as an iterative scheme with approximations, which results in new convergence conditions. We compare the two conditions and show that the new conditions represent the features of Secant method in a more precise way.

  • PDF

A FIFTH-ORDER IMPROVEMENT OF THE EULER-CHEBYSHEV METHOD FOR SOLVING NON-LINEAR EQUATIONS

  • Kim, Weonbae;Chun, Changbum;Kim, Yong-Il
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.437-447
    • /
    • 2011
  • In this paper we present a new variant of the Euler-Chebyshev method for solving nonlinear equations. Analysis of convergence is given to show that the presented methods are at least fifth-order convergent. Several numerical examples are given to illustrate that newly presented methods can be competitive to other known fifth-order methods and the Newton method in the efficiency and performance.

A HIGHER ORDER ITERATIVE ALGORITHM FOR MULTIVARIATE OPTIMIZATION PROBLEM

  • Chakraborty, Suvra Kanti;Panda, Geetanjali
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.5_6
    • /
    • pp.747-760
    • /
    • 2014
  • In this paper a higher order iterative algorithm is developed for an unconstrained multivariate optimization problem. Taylor expansion of matrix valued function is used to prove the cubic order convergence of the proposed algorithm. The methodology is supported with numerical and graphical illustration.

Development of MLS Difference Method for Material Nonlinear Problem (MLS차분법을 이용한 재료비선형 문제 해석)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.237-244
    • /
    • 2016
  • This paper presents a nonlinear Moving Least Squares(MLS) difference method for material nonlinearity problem. The MLS difference method, which employs strong formulation involving the fast derivative approximation, discretizes governing partial differential equation based on a node model. However, the conventional MLS difference method cannot explicitly handle constitutive equation since it solves solid mechanics problems by using the Navier's equation that unifies unknowns into one variable, displacement. In this study, a double derivative approximation is devised to treat the constitutive equation of inelastic material in the framework of strong formulation; in fact, it manipulates the first order derivative approximation two times. The equilibrium equation described by the divergence of stress tensor is directly discretized and is linearized by the Newton method; as a result, an iterative procedure is developed to find convergent solution. Stresses and internal variables are calculated and updated by the return mapping algorithm. Effectiveness and stability of the iterative procedure is improved by using algorithmic tangent modulus. The consistency of the double derivative approximation was shown by the reproducing property test. Also, accuracy and stability of the procedure were verified by analyzing inelastic beam under incremental tensile loading.

A Comparison of Image Reconstruction Techniques for Electrical Resistance Tomography (Electrical Resistance Tomography의 영상복원 기법의 비교)

  • Kim, Ho-Chan;Boo, Chang-Jin;Lee, Yoon-Joon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.119-126
    • /
    • 2005
  • Electrical resistance tomography(ERT) maps resistivity values of the soil subsurface and characterizes buried objects. The characterization includes location, size and resistivity of buried objects. In this paper, Gauss-Newton, truncated least squares(TLS) and simultaneous iterative reconstruction technique(SIRT) methods are presented for the solution of the ERT image reconstruction. Computer simulations show that the spatial resolution of the reconstructed images by the TLS approach is improved as compared to those obtained by the Gauss-Newton and SIRT method.

COMPUTATIONAL PITFALLS OF HIGH-ORDER METHODS FOR NONLINEAR EQUATIONS

  • Sen, Syamal K.;Agarwal, Ravi P.;Khattri, Sanjay K.
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.395-411
    • /
    • 2012
  • Several methods with order higher than that of Newton methods which are of order 2 have been reported in literature for solving nonlinear equations. The focus of most of these methods was to economize on/minimize the number of function evaluations per iterations. We have demonstrated here that there are several computational pit-falls, such as the violation of fixed-point theorem, that one could encounter while using these methods. Further it was also shown that the overall computational complexity could be more in these high-order methods than that in the second-order Newton method.

Iterative Inversion Using Moment Method and Improved Newton`s AIgorithmin the Configuration Domain (공간영역에서 모멘트방법과 개선된 Newton 알고리즘을 이용한 반복 역산란 방법)

  • 박천석;김정혜;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.5
    • /
    • pp.39-49
    • /
    • 1994
  • In this paper, An inversion technique to reconstruct permittivity profiles of 2-D inhomogeneous dielectric objects by iterativeprocess using the moment-methodand improved newton's algoritham is presented. In order to reduce the noise effect in the scattered fieldon the reconstructed permittivity profiles, the cell size of inversescattering is made be larger than that of forward scattering. Performing numerical calculations of dielectric scatterer it is demonstrated that this inversion is able to reconstruct dielectric objectshaving large size and inhomogeneous characteristics, which is insentive tothe noise effect in the scattered field on the reconstructed result.

  • PDF

CHEYSHEFF-HALLEY-LIKE METHODS IN BANACH SPACES

  • Argyros, Ioannis-K.
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.83-108
    • /
    • 1997
  • Chebysheff-Halley methods are probably the best known cubically convergent iterative procedures for solving nonlinear equa-tions. These methods however require an evaluation of the second Frechet-derivative at each step which means a number of function eval-uations proportional to the cube of the dimension of the space. To re-duce the computational cost we replace the second Frechet derivative with a fixed bounded bilinear operator. Using the majorant method and Newton-Kantorovich type hypotheses we provide sufficient condi-tions for the convergence of our method to a locally unique solution of a nonlinear equation in Banach space. Our method is shown to be faster than Newton's method under the same computational cost. Finally we apply our results to solve nonlinear integral equations appearing in radiative transfer in connection with the problem of determination of the angular distribution of the radiant-flux emerging from a plane radiation field.

NEWTON'S METHOD FOR SYMMETRIC AND BISYMMETRIC SOLVENTS OF THE NONLINEAR MATRIX EQUATIONS

  • Han, Yin-Huan;Kim, Hyun-Min
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.755-770
    • /
    • 2013
  • One of the interesting nonlinear matrix equations is the quadratic matrix equation defined by $$Q(X)=AX^2+BX+C=0$$, where X is a $n{\times}n$ unknown real matrix, and A, B and C are $n{\times}n$ given matrices with real elements. Another one is the matrix polynomial $$P(X)=A_0X^m+A_1X^{m-1}+{\cdots}+A_m=0,\;X,\;A_i{\in}\mathbb{R}^{n{\times}n}$$. Newton's method is used to find the symmetric and bisymmetric solvents of the nonlinear matrix equations Q(X) and P(X). The method does not depend on the singularity of the Fr$\acute{e}$chet derivative. Finally, we give some numerical examples.