• Title/Summary/Keyword: Newton iterative

Search Result 148, Processing Time 0.025 seconds

HIGHER ORDER INTERVAL ITERATIVE METHODS FOR NONLINEAR EQUATIONS

  • Singh, Sukhjit;Gupta, D.K.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.61-76
    • /
    • 2015
  • In this paper, a fifth order extension of Potra's third order iterative method is proposed for solving nonlinear equations. A convergence theorem along with the error bounds is established. The method takes three functions and one derivative evaluations giving its efficiency index equals to 1.495. Some numerical examples are also solved and the results obtained are compared with some other existing fifth order methods. Next, the interval extension of both third and fifth order Potra's method are developed by using the concepts of interval analysis. Convergence analysis of these methods are discussed to establish their third and fifth orders respectively. A number of numerical examples are worked out using INTLAB in order to demonstrate the efficacy of the methods. The results of the proposed methods are compared with the results of the interval Newton method.

An Efficient Improvement of the Iterative Eigenvalue Calculation Method and the Selection of Initial Values in AESOPS Algorithm (AESOPS 알고리즘의 고유치 반복계산식과 고유치 초기값 선정의 효율적인 개선에 관한 연구)

  • Kim, Deok-Young;Kwon, Sae-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1394-1400
    • /
    • 1999
  • This paper presents and efficient improvement of the iterative eigenvalue calculation method and the selection of initial values in AESOPS algorithm. To determine the initial eigenvalues of the system, system state matrix is constructed with the two-axis generator model. From the submatrices including synchronous and damping coefficients, the initial eigenvalues are calculated by the QR method. Participation factors are also calculated from the above submatrices in order to determine the generators which have a important effect to the specific oscillation mode. Also, the heuristically approximated eigenvalue calculation method in the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

Development of an AOA Location Method Using Covariance Estimation

  • Lee, Sung-Ho;Roh, Gi-Hong;Sung, Tae-Kyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.485-489
    • /
    • 2006
  • In last decades, several linearization methods for the AOA measurements have been proposed, for example, Gauss-Newton method and closed-form solution. Gauss-Newton method can achieve high accuracy, but the convergence of the iterative process is not always ensured if the initial guess is not accurate enough. Closed-form solution provides a non-iterative solution and it is less computational. It does not suffer from convergence problem, but estimation error is somewhat larger. This paper proposes a self-tuning weighted least square AOA algorithm that is a modified version of the conventional closed-form solution. In order to estimate the error covariance matrix as a weight, two-step estimation technique is used. Simulation results show that the proposed method has smaller positioning error compared to the existing methods.

  • PDF

Post-buckling analysis of Mindlin Cut out-plate reinforced by FG-CNTs

  • Motezaker, Mohsen;Eyvazian, Arameh
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.289-297
    • /
    • 2020
  • In the present research post-buckling of a cut out plate reinforced through carbon nanotubes (CNTs) resting on an elastic foundation is studied. Material characteristics of CNTs are hypothesized to be altered within thickness orientation which are calculated according to Mori-Tanaka model. For modeling the system mathematically, first order shear deformation theory (FSDT) is applied and using energy procedure, the governing equations can be derived. With respect to Rayleigh-Ritz procedure as well as Newton-Raphson iterative scheme, the motion equations are solved and therefore, post-buckling behavior of structure will be tracked. Diverse parameters as well as their reactions on post-buckling paths focusing cut out measurement, CNT's volume fraction and agglomeration, dimension of plate and an elastic foundation are investigated. It is revealed that presence of a square cut out can affect negatively post-buckling behavior of structure. Moreover, adding nanocompsits in the matrix leads to enhancement of post-buckling response of system.

A Newton-Raphson Solution for MA Parameters of Mixed Autoregressive Moving-Average Process

  • Park, B. S.
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 1987
  • Recently a new form of the extended Yule-Walker equations for a mixed autoregressive moving-average process of orders p and q has been proposed. It can be used to obtain p+q+1 parameter values from the first p+q+1 autocovariance terms. The autoregressive part of the equations is linear and can be easily solved. In contrast the moving-average part is composed of nonlinear simultaneous equations. Thus some iterative algorithms are necessary to solve them. The iterative algorithm presented by Choi(1986) is very simple but its convergence has not been proved yet. In this paper a Newton-Raphson solution for the moving-average parameters is presented and its convergence is shown. Also numerical example illustrate the performance of the algorithm.

  • PDF

Performance Improvement for Device-to-Device (D2D) Users in Underlay Cellular Communication Networks

  • Bin Zhong ;Hehong Lin;Liang Chen ;Zhongshan Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2805-2817
    • /
    • 2024
  • This study focuses on the performance of device-to-device (D2D) communications in underlay cellular networks by analyzing key metrics such as successful transmission probability, coverage probability, and throughput. Under the homogeneous Poisson point process (PPP) spatial distribution of full-duplex (FD)-D2D users in cellular networks, stochastic geometry tools are used to derive approximate expressions for D2D users' coverage probability and throughput. In comparison to the conventional half-duplex (HD) communication mode, when the self-interference cancellation factor β reaches -95 dB, there is a substantial improvement in the throughput of FD-D2D users, nearly doubling their gain. Additionally, experimental results demonstrate that the Newton iterative algorithm can be used to optimize the targeted signal-to-interference-plus-noise-ratio (SINR) threshold of users within the range of (10, 20) dB.

NEWTON'S METHOD FOR SOLVING A QUADRATIC MATRIX EQUATION WITH SPECIAL COEFFICIENT MATRICES

  • Seo, Sang-Hyup;Seo, Jong-Hyun;Kim, Hyun-Min
    • Honam Mathematical Journal
    • /
    • v.35 no.3
    • /
    • pp.417-433
    • /
    • 2013
  • We consider the iterative solution of a quadratic matrix equation with special coefficient matrices which arises in the quasibirth and death problem. In this paper, we show that the elementwise minimal positive solvent of the quadratic matrix equations can be obtained using Newton's method if there exists a positive solvent and the convergence rate of the Newton iteration is quadratic if the Fr$\acute{e}$chet derivative at the elementwise minimal positive solvent is nonsingular. Although the Fr$\acute{e}$chet derivative is singular, the convergence rate is at least linear. Numerical experiments of the convergence rate are given.

Kth order Newton-Raphson's Floating Point Number Nth Root (K차 뉴톤-랍손 부동소수점수 N차 제곱근)

  • Cho, Gyeong-Yeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2018
  • In this paper, a tentative Kth order Newton-Raphson's floating point number Nth root algorithm for K order convergence rate in one iteration is proposed by applying Taylor series to the Newton-Raphson root algorithm. Using the proposed algorithm, $F^{-1/N}$ and $F^{-(N-1)/N}$ can be computed from iterative multiplications without division. It also predicts the error of the algorithm iteration and iterates only until the predicted error becomes smaller than the specified value. Since the proposed algorithm only performs the multiplications until the error gets smaller than a given value, it can be used to improve the performance of a floating point number Nth root unit.

Microwave Imaging of a Perfectly Conducting Cylinder by Using Modified Newton's Algorithm in the Angular Spectral Domain (각 스펙트럼 영역에서 개선된 Newton 알고리듬을 이용한 완전도체의 역산란 방법)

  • 박선규;박정석;라정웅
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.6
    • /
    • pp.34-44
    • /
    • 1994
  • In this paper, an iterative inversion method in angular spectral domain is presented for microwave imaging of a perfectly conducting cylinder. Angular spectra are calculated from measured far-field scattered fields. And then both the propagating modes and the evanescent modes are defined. The center and initial shape of an unknown conductor may be obtained by the characteristics of angular spectra and the total scattering cross section (TSCS). Finally, the orignal shape is reconstructed by the modified Newton algorithm. By using well estimated initial shape the local minima can be avoided, which might appear when the nonlinear equation is solved with Newton algorithm. It is shown to be robust to noise in scattered fields via numerical examples by keeping only the propagating modes and filtering out the evanescent modes.

  • PDF

VARIANTS OF NEWTON'S METHOD USING FIFTH-ORDER QUADRATURE FORMULAS: REVISITED

  • Noor, Muhammad Aslam;Waseem, Muhammad
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1195-1209
    • /
    • 2009
  • In this paper, we point out some errors in a recent paper by Cordero and Torregrosa [7]. We prove the convergence of the variants of Newton's method for solving the system of nonlinear equations using two different approaches. Several examples are given, which illustrate the cubic convergence of these methods and verify the theoretical results.

  • PDF