Purpose: This study analyzed how the four nurse-related news items 'talent show,' 'neonatal death,' 'nurse's death,' and 'sexual harassment' were portrayed in Korean daily newspaper articles. Methods: A total of 392 newspaper articles published from November 2017 to May 2018 were retrieved through the internet homepages of three newspapers, the Chosun Ilbo, the Dong-a Ilbo, and the JoongAng Ilbo and through a database for 13 other newspapers. Articles were analyzed for their views on nurses and their structural and contextual frames. Results: Articles with the highest frequency of mentioning nurses' death appeared in the JoongAng Ilbo; these were written as straight news articles. In the analyzed articles, nurses were portrayed mostly as victims, troublemakers, passive, or selfish. Articles were written mostly in episodic, incident notice, or attribution of responsibility frames. Conclusion: It was not uncommon to read articles with negative views on nurses; most of these articles focused only the four major incidents as straight news type stories. Future efforts are needed to study the implications of newspaper articles with negative views on nurses and the frames most commonly used.
공공의 영역에 속하는 뉴스의 사실 자체는 공기처럼 자유로운 것이지만, 이것이 노동과 자본의 투자로 뉴스로 전환되었을 때, 상업성이 인정되는 재산권적 가치를 갖게 되며, 이를 생산한 언론사는 배타적 권리를 갖게 된다. 상품으로서 뉴스는 재산인 것이다. 재판부도 이러한 취지에 부합하게 사실보도에 대한 저작권 보호의 범위를 넓게 인식할 필요가 있다. 법으로 보호되는 것은 표현의 방법, 사건에 대한 기자의 분석과 해석, 문장의 구성과 자료의 배열, 단어의 선택, 특정한 부분에 주어진 강조 등이다. 즉, 침해의 핵심은 일반적인 주제나 사건 보도에 있는 것이 아닌 취급의 유사성이나 표현 방법의 착취에 있다. 보도기사가 사실적 요소들을 열거하여 정보를 전달하고 있지만, 소재의 선택과 문장 속에서의 용어의 배열, 강조 등은 학문이나 예술과 같은 고도의 창작성을 갖는 것은 아니지만, 낮은 정도의 창작활동에 속하는 것이다. 따라서 보도기사를 단순한 사실의 전달에 머물러 창작성이 결여되었다고 판단하는 것은 저작권법 원래 취지와도 배치되는 것이다.
Objectives : The aim of this study is to analyze the news articles related to Korean Medicine(KM) and compare trends in news reports from 2018 to 2022. Method : News articles related to KM were collected through the BigKinds, the news bigdata service of the Korea Press Foundation. News reports from 1 January 2018 to 31 December 2022 were searched. 2,950 news articles out of a total of 12,497 met the inclusion criteria. First, quantitative changes in media coverage were analyzed by year, media outlet, and month. For qualitative analysis, two authors independently coded the content of news articles, discussed them until consensus, and consulted with a third researcher to classify them. In addition, keywords extracted by the BigKind's Topic Rank algorithm were compared and analyzed in each year. Results : The number of news articles on KM decreased by 42% in 2022 compared to 2018. Over a fiveyear period, the Naeil Shinmun reported the most on KM among newspapers, while the Hankyoreh did the least. Among broadcasters, YTN reported the most and SBS did the least. When analyzing the reports by category, the most common was 'treatment', followed by 'prevention' and 'scientification'. As a result of extracting keywords with high weight and frequency, 'immunity' and 'immune system' ranked the first and second in 2018, while 'COVID 19' and 'medical law violation' did in 2022. Conclusion : The decrease in media reports on KM during the COVID-19 epidemic period seems to be due to the limited role of KM in responding to infectious diseases, and efforts to expand the scope of KM can induce increased media reports and social interest.
With the development of the Internet and the increase of smart phones, various services considering user convenience are increasing, so that users can check news in real time anytime and anywhere. However, online news is categorized by media and category, and it provides only a few related search terms, making it difficult to find related news related to keywords. In order to solve this problem, we propose a method to recommend related documents more accurately by applying Doc2Vec similarity to the specific keywords of news articles and weighting the title and contents of news articles. We collect news articles from Naver politics category by web crawling in Java environment, preprocess them, extract topics using LDA modeling, and find similarities using Doc2Vec. To supplement Doc2Vec, we apply TF-IDF to obtain TC(Title Contents) weights for the title and contents of news articles. Then we combine Doc2Vec similarity and TC weight to generate TC weight-similarity and evaluate the similarity between words using PMI technique to confirm the keyword association.
이 연구는 포털 편집판에 게시된 언론사로부터 전재 받은 뉴스기사에 딸린 댓글의 명예훼손행위를 포털의 작위의무에 따라 판단한 서울중앙지방법원의 법리를 비판적으로 분석하고 있다. 편집판에 게시하는 언론기사의 진위를 포털이 확인하도록 요구하고, 그 기사에 대한 명예훼손적 댓글을 삭제하도록 발행자 수준의 작위의무를 강제하는 것은 결국 사적 검열로 이어져 정보의 유통과 표현의 자유를 제한할 수 있다. 이는 사적 존재인 포털을 검열의 주체로 재판부가 인정하는 것과 다를 바 없으며, 위헌적 요소를 포함하고 있다. 포털이 직접 관리하는 영역과 커뮤니티 관리자에게 위임된 카페와 게시판 등을 구분해서 작위의무를 판단할 필요가 있다. 단순 전달자 수준을 넘어서는 작위의무를 부과하기 위해서는 포털이 언론사로부터 제공받은 기사를 임의로 변경하거나, 내용 변경을 통해 명예훼손을 유도한 경우로 한정해야 한다. 더불어 포털이 언론사로부터 전재 받은 기사의 위법성을 알 수 있었고, 이를 삭제하지 않았다는 사실만으로는 공동정범이 성립될 수 없다. 결론적으로 전재 받은 기사를 적극적으로 변경하여 명백하게 명예훼손에 이르는 경우에 한해서 포털에 책임을 묻는 것이 '사적 검열의 강제'로부터 자유로울 수 있을 것이며, 온라인상에서의 표현의 자유가 보호될 수 있을 것이다.
In this parer, we propose LM adaptation for broadcast news recognition. We collect information of recent articles from the internet on real time, make a recent small size LM, and then interpolate recent LM with a existing LM composed of existing large broadcast news corpus. We performed interpolation experiments to get the best type of articles from recent corpus because collected recent corpus is composed of articles which are related with test set, and which are unrelated. When we made an adapted LM using recent LM with similar articles to test set through Tf-Idf method and existing LM, we got the best result that ERR of pseudo-morpheme based recognition performance has 17.2 % improvement and the number of OOV has reduction from 70 to 27.
오늘날의 검색 포털은 뉴스의 창구로서는 가장 큰 비율을 차지하지만, 중립성에 대해서는 의문이 제기되고 있다. 이는 포털 뉴스가 편향된 정보의 소비를 유도할 수 있기 때문이다. 본 논문은 뉴스 기사의 정치적 편향도를 딥러닝을 이용하여 측정하는 방법에 대하여 소개한다. 이는 기사를 비판적으로 바라보는 시각을 뉴스 독자에게 제공할 것이다. 구체적으로, 국회 회의록에서 추출한 키워드에 편향도를 부여하고, 이를 기반으로 기사의 편향도를 분석하여 머신러닝용 데이터를 구축하였다. 최종적으로 순환 신경망과 합성곱 신경망을 융합한 딥러닝을 통해 기사의 편향도를 계산하는 것을 목표로 하였다. 학습한 모델의 정확도를 분석한 결과 문장별 편향의 좌/우편향 판정은 95.6%의 정확도를 보였으나, 신문기사 전체에서는 46.0%의 정확도를 보였다. 이는 기존의 여러 편향성 연구와 다르게 특정 주제에 한정되지 않고 기사의 보수-진보 편향성을 분석할 수 있도록 한다.
해외건설사업 시, 현지 상황을 정확하고 빠르게 파악하는 것은 프로젝트 성공을 위해 매우 중요한 요소이다. 이는 토픽모델링을 활용한 뉴스 기사 분석을 통해 실현될 수 있다. 본 연구는 Latent Dirichlet Allocation(LDA)과 BERTopic 두 토픽모델링 기법을 활용하여 뉴스 기사를 분석하고, 최적의 기법을 찾고자 하였다. 모델링 결과로 자동생성된 토픽과 실제 문서 주제와의 일치 여부를 확인하기 위해 BBC 뉴스 기사 6,273건 을 수집하여 ground truth를 생성하고, 이를 모델링된 토픽과 비교하였다. 그 결과 LDA의 F1 score는 0.011, BERTopic은 0.244로 나타났다. 이를 통해 BERTopic이 실제 뉴스 기사의 주제를 잘 파악하며, 해외건설시장의 주요 이슈를 자동으로 이해하는 데 더욱 용이하다는 것을 확인할 수 있었다
신문기사를 읽기 위하여 종이 신문의 이용은 줄고 스마트폰을 이용하는 경우가 많아지고 있어 뉴스 어플리케이션은 늘고 있다. 안드로이드 플레이 스토어의 많은 뉴스 어플리케이션은 2가지로 분류된다. 첫 번째는 특정 신문사에서 개발하여 해당 신문사의 기사만 배포하는 것이고, 나머지는 신문 목록을 보여주고 신문을 선택하면 신문사 홈페이지를 보여주는 것이다. 본 논문에서는 국내의 많은 신문사의 기사를 모아서 실시간으로 제공하기 위한 실시간뉴스 어플리케이션을 설계 및 구현하였다. 신문사들은 제공하는 RSS로 최신 기사를 제공한다. 서버프로그램은 최신기사를 시간 순으로 정렬하여 DB에 저장하고 실시간뉴스 어플리케이션에서 요구하는 기사를 실시간으로 전송한다. 최신 뉴스를 보기 위해 여러 곳에 분산된 신문사의 홈페이지를 각각 방문하지 않고도 각 신문사의 기사를 모아서 볼 수 있고 각 홈페이지를 접속하는데 사용되는 데이터의 사용을 줄일 수 있는 장점이 있다.
본 연구의 목적은 포털 뉴스를 통해 보도된 특정 국가(체코)에 대한 기사 내용을 기간별로 분석해봄으로써 우리나라와 체코와의 분야별 관계 변화 추이를 고찰해 보기 위함이다. 이를 위해, 국내 포털 사이트 중 하나인 네이버 뉴스 검색을 통해 1990년부터 2019년 3월 31일 현재까지 체코에 관하여 보도된 뉴스 기사를 분석하였다. 1990년부터 5년 단위로 6개의 기간을 설정하여 각 기간별로 200개씩의 체코에 관한 뉴스 기사 총 1,200건을 4개 분야(정치, 경제, 사회 및 문화, 교육)로 나누어 분석하였다. 분석결과, 사회 및 문화 분야 기사 건수의 비중이 가장 큰 것으로 나타났으며 세부 주제의 변화 범위 또한 가장 광범위하게 이루어 졌음을 알 수 있었다. 결론에서는 양국 간의 보다 긴밀한 관계 구축을 위한 분야별 협력 증진 방안을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.