• Title/Summary/Keyword: News Article Analysis

Search Result 118, Processing Time 0.026 seconds

An Analysis of the Comparative Importance of Heuristic Attributes Affecting Users' Voluntary Payment in Online News Content (자발적 독자구독료에 영향을 미치는 온라인 뉴스 콘텐츠의 휴리스틱 속성 간 상대적 중요도 분석)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Information Technology Services
    • /
    • v.16 no.4
    • /
    • pp.177-195
    • /
    • 2017
  • Traditionally, news was consumed only through printed newspapers and broadcasting media, such as radio and television. However, the Internet has enabled people to consume news content online. Since most of online news content has been provided for free, it is not easy for news providers to charge the fixed subscription fee for online news content. Therefore, as an alternative strategy, some online news providers have tried to adopt the Pay-What-You-Want (PWYW) pricing model, which allows users (readers) to pay as much as they want after consuming news content. As this pricing model shows some possibility to grow and replace the unsuccessful monetization strategy of online news content, we therefore examined the comparative importance of seven heuristic attributes (i.e., article evaluation, article share, article comment, article information design, article length, writer SNS, and writer information) affecting readers' voluntary payment behavior through a conjoint analysis with 379 news articles collected from online news Website (i.e., Ohmynews.com) where the PWYW model has been working successfully. This study found that article share and article length are the most important factors which affect online news content users' voluntary payment. Finally, two major and eight minor propositions are suggested based on the findings of the study. This study would suggest guidelines for how to create online news content which induces much more voluntary payment.

An Analysis of the Comparative Importance of Systematic Attributes for Developing an Intelligent Online News Recommendation System: Focusing on the PWYW Payment Model (지능형 온라인 뉴스 추천시스템 개발을 위한 체계적 속성간 상대적 중요성 분석: PWYW 지불모델을 중심으로)

  • Lee, Hyoung-Joo;Chung, Nuree;Yang, Sung-Byung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.75-100
    • /
    • 2018
  • Mobile devices have become an important channel for news content usage in our daily life. However, online news content readers' resistance to online news monetization is more serious than other digital content businesses, such as webtoons, music sources, videos, and games. Since major portal sites distribute online news content free of charge to increase their traffics, customers have been accustomed to free news content; hence this makes online news providers more difficult to switch their policies on business models (i.e., monetization policy). As a result, most online news providers are highly dependent on the advertising business model, which can lead to increasing number of false, exaggerated, or sensational advertisements inside the news website to maximize their advertising revenue. To reduce this advertising dependencies, many online news providers had attempted to switch their 'free' readers to 'paid' users, but most of them failed. However, recently, some online news media have been successfully applying the Pay-What-You-Want (PWYW) payment model, which allows readers to voluntarily pay fees for their favorite news content. These successful cases shed some lights to the managers of online news content provider regarding that the PWYW model can serve as an alternative business model. In this study, therefore, we collected 379 online news articles from Ohmynews.com that has been successfully employing the PWYW model, and analyzed the comparative importance of systematic attributes of online news content on readers' voluntary payment. More specifically, we derived the six systematic attributes (i.e., Type of Article Title, Image Stimulation, Article Readability, Article Type, Dominant Emotion, and Article-Image Similarity) and three or four levels within each attribute based on previous studies. Then, we conducted content analysis to measure five attributes except Article Readability attribute, measured by Flesch readability score. Before conducting main content analysis, the face reliabilities of chosen attributes were measured by three doctoral level researchers with 37 sample articles, and inter-coder reliabilities of the three coders were verified. Then, the main content analysis was conducted for two months from March 2017 with 379 online news articles. All 379 articles were reviewed by the same three coders, and 65 articles that showed inconsistency among coders were excluded before employing conjoint analysis. Finally, we examined the comparative importance of those six systematic attributes (Study 1), and levels within each of the six attributes (Study 2) through conjoint analysis with 314 online news articles. From the results of conjoint analysis, we found that Article Readability, Article-Image Similarity, and Type of Article Title are the most significant factors affecting online news readers' voluntary payment. First, it can be interpreted that if the level of readability of an online news article is in line with the readers' level of readership, the readers will voluntarily pay more. Second, the similarity between the content of the article and the image within it enables the readers to increase the information acceptance and to transmit the message of the article more effectively. Third, readers expect that the article title would reveal the content of the article, and the expectation influences the understanding and satisfaction of the article. Therefore, it is necessary to write an article with an appropriate readability level, and use images and title well matched with the content to make readers voluntarily pay more. We also examined the comparative importance of levels within each attribute in more details. Based on findings of two studies, two major and nine minor propositions are suggested for future empirical research. This study has academic implications in that it is one of the first studies applying both content analysis and conjoint analysis together to examine readers' voluntary payment behavior, rather than their intention to pay. In addition, online news content creators, providers, and managers could find some practical insights from this research in terms of how they should produce news content to make readers voluntarily pay more for their online news content.

News Article Identification Methods with Fact-Checking Guideline on Artificial Intelligence & Bigdata

  • Kang, Jangmook;Lee, Sangwon
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.3
    • /
    • pp.352-359
    • /
    • 2021
  • The purpose of this study is to design and build fake news discrimination systems and methods using fact-checking guidelines. In other words, the main content of this study is the system for identifying fake news using Artificial Intelligence -based Fact-checking guidelines. Specifically planned guidelines are needed to determine fake news that is prevalent these days, and the purpose of these guidelines is fact-checking. Identifying fake news immediately after seeing a huge amount of news is inefficient in handling and ineffective in handling. For this reason, we would like to design a fake news identification system using the fact-checking guidelines to create guidelines based on pattern analysis against fake news and real news data. The model will monitor the fact-checking guideline model modeled to determine the Fact-checking target within the news article and news articles shared on social networking service sites. Through this, the model is reflected in the fact-checking guideline model by analyzing news monitoring devices that select suspicious news articles based on their user responses. The core of this research model is a fake news identification device that determines the authenticity of this suspected news article. So, we propose news article identification methods with fact-checking guideline on Artificial Intelligence & Bigdata. This study will help news subscribers determine news that is unclear in its authenticity.

An Analysis of the influence of the Editorial Elements of Portal News Section on the News User's Choice of Articles (포털 뉴스섹션의 편집요인이 뉴스 이용자의 기사선택에 미치는 영향에 대한 분석)

  • Park, Kwang-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2087-2095
    • /
    • 2012
  • The editorial elements which are used in this paper are made up of news categories, photograph articles, titles of article written bold strokes and contents of article. Of these elements, only the three elements of photographic articles, the titles of article written bold strokes and contents of article had some effects on the choice of articles. For the portal news, only the news categories, the titles of article written bold strokes and the name of newspaper had an effect on the choice of articles. Of the news genres such as politics, business, social affairs, sports, culture/entertainment, world news and IT/science, only the three genres of social affairs, culture/entertainment and world news had some effects on news users' choice. For the difference between man group and woman group in analyzing the choice of articles, there was the difference in four elements of business, sports, culture/entertainment and IT/science.

Analysis of Shipping and Logistics News Articles using Topic Modeling (토픽모델링을 활용한 해운물류 뉴스 분석)

  • Hee-Young Yoon;Il-Youp Kwak
    • Korea Trade Review
    • /
    • v.46 no.4
    • /
    • pp.61-76
    • /
    • 2021
  • This study focuses on three logistics-related news (Logistics Newspaper, Korea Shipping Gadget, and Korea Shipping Newspaper) in order to present changes in logistics issues, centering on Corona 19, which has recently had the greatest impact in the world. For data collection, two-year news articles in 2019 and 2020 (title, article, content, date, article classification, article URL) were collected through web crawling (using Python's BeautifulSoup, requests module) on the homepages of three representative logistics-related media companies. As for the data analysis methods, fundamental statistical analysis, Latent Dirichlet Allocation (LDA) for topic modeling, and Scattertext were performed. The analysis results were as follows. First, among the three news media related to logistics, the Korea Shipping Newspaper was carrying out the most active media activities. Second, through topic modeling with LDA, eight logistics-related topics were identified, and keywords and significant issues of each topic were presented. Third, the keywords were visually expressed through Scattertext. This is the first study to present changes in the logistics field, focusing on articles from representative logistics-related media in 2019 and 2020. In particular, 2019 and 2020 can be divided into before and after the outbreak of Corona 19, which has had a great impact not only on the logistics field but also on our lives as a whole. For future work, a multi-faceted approach is required, such as comparative studies of logistics issues between countries or presenting implications based on long-term time-series articles.

User-Perspective Issue Clustering Using Multi-Layered Two-Mode Network Analysis (다계층 이원 네트워크를 활용한 사용자 관점의 이슈 클러스터링)

  • Kim, Jieun;Kim, Namgyu;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.93-107
    • /
    • 2014
  • In this paper, we report what we have observed with regard to user-perspective issue clustering based on multi-layered two-mode network analysis. This work is significant in the context of data collection by companies about customer needs. Most companies have failed to uncover such needs for products or services properly in terms of demographic data such as age, income levels, and purchase history. Because of excessive reliance on limited internal data, most recommendation systems do not provide decision makers with appropriate business information for current business circumstances. However, part of the problem is the increasing regulation of personal data gathering and privacy. This makes demographic or transaction data collection more difficult, and is a significant hurdle for traditional recommendation approaches because these systems demand a great deal of personal data or transaction logs. Our motivation for presenting this paper to academia is our strong belief, and evidence, that most customers' requirements for products can be effectively and efficiently analyzed from unstructured textual data such as Internet news text. In order to derive users' requirements from textual data obtained online, the proposed approach in this paper attempts to construct double two-mode networks, such as a user-news network and news-issue network, and to integrate these into one quasi-network as the input for issue clustering. One of the contributions of this research is the development of a methodology utilizing enormous amounts of unstructured textual data for user-oriented issue clustering by leveraging existing text mining and social network analysis. In order to build multi-layered two-mode networks of news logs, we need some tools such as text mining and topic analysis. We used not only SAS Enterprise Miner 12.1, which provides a text miner module and cluster module for textual data analysis, but also NetMiner 4 for network visualization and analysis. Our approach for user-perspective issue clustering is composed of six main phases: crawling, topic analysis, access pattern analysis, network merging, network conversion, and clustering. In the first phase, we collect visit logs for news sites by crawler. After gathering unstructured news article data, the topic analysis phase extracts issues from each news article in order to build an article-news network. For simplicity, 100 topics are extracted from 13,652 articles. In the third phase, a user-article network is constructed with access patterns derived from web transaction logs. The double two-mode networks are then merged into a quasi-network of user-issue. Finally, in the user-oriented issue-clustering phase, we classify issues through structural equivalence, and compare these with the clustering results from statistical tools and network analysis. An experiment with a large dataset was performed to build a multi-layer two-mode network. After that, we compared the results of issue clustering from SAS with that of network analysis. The experimental dataset was from a web site ranking site, and the biggest portal site in Korea. The sample dataset contains 150 million transaction logs and 13,652 news articles of 5,000 panels over one year. User-article and article-issue networks are constructed and merged into a user-issue quasi-network using Netminer. Our issue-clustering results applied the Partitioning Around Medoids (PAM) algorithm and Multidimensional Scaling (MDS), and are consistent with the results from SAS clustering. In spite of extensive efforts to provide user information with recommendation systems, most projects are successful only when companies have sufficient data about users and transactions. Our proposed methodology, user-perspective issue clustering, can provide practical support to decision-making in companies because it enhances user-related data from unstructured textual data. To overcome the problem of insufficient data from traditional approaches, our methodology infers customers' real interests by utilizing web transaction logs. In addition, we suggest topic analysis and issue clustering as a practical means of issue identification.

Controversy and Guideline Suggestion Surrounding Fake News in the Digital Media Age (가짜뉴스(Fake News) 현황분석을 통해 본 디지털매체 시대의 쟁점과 뉴스콘텐츠 제작 가이드라인)

  • Kwon, Mahnwoo;Jun, Yong Woo;Im, Hajin
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1419-1426
    • /
    • 2015
  • Distinguishing border between news and advertising is disappearing. Traditional journalism considered editorial part deals news and ad part handle commercial messages. But now this classification is meaningless. Current news consumers do not separate advertising content and non-advertising content. In Korea, making fake news or paid news pages is becoming social problem. Fake news uses various camouflages to pretend to be real news. This paper descriptively analyzed Korean fake news cases and suggested some guidelines for publishing news. We analyzed 3 major newspaper web sites from July to September, 2014. These three newspapers publish section pages everyday containing fake news or sponsored news. Totally more than one thousand articles were selected for content analysis. We coded the numbers of fake news, day of the week, the rate of sponsored news, average fake news publication number per pages, the conformity between news and advertising, and the type of fake news. We also coded the number of sponsored news article in day sections. We used method of comparing the advertising contents and news articles. As a result, 24.8% of news article were published for the advertising sponsors. Advertorial or fake news were sometimes arranged same pages the same day. We coded the conformity between same advertising and news content. More than 60 percent (60.9%) of fake news match with their sponsors. PR style of fake news is top and advertising type of fake news is the lowest.

Evaluation of Topic Modeling Performance for Overseas Construction Market Analysis Using LDA and BERTopic on News Articles (LDA 및 BERTopic 기반 해외건설시장 뉴스 기사 토픽모델링 성능평가)

  • Baik, Joonwoo;Chung, Sehwan;Chi, Seokho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.811-819
    • /
    • 2023
  • Understanding the local conditions is a crucial factor in enhancing the success potential of overseas construction projects. This can be achieved through the analysis of news articles of the target market using topic modeling techniques. In this study, the authors aimed to analyze news articles using two topic modeling methods, namely Latent Dirichlet Allocation (LDA) and BERTopic, in order to determine the optimal approach for market condition analysis. To evaluate the alignment between the generated topics and the actual themes of the news documents, the research collected 6,273 BBC news articles, created ground truth data for individual news article topics, and finally compared this ground truth with the results of the topic modeling. The F1 score for LDA was 0.011, while BERTopic achieved a score of 0.244. These results indicate that BERTopic more accurately reflected the actual topics of news articles, making it more effective for understanding the overseas construction market.

Newspaper analysis of research on dental hygienists in Korea from 2005 to 2008 (한국 신문에 게재된 치과위생사 관련 기사 분석: 2005~2008년 기사를 중심으로)

  • Oh, Sang-Hwan;Nam, Yong-Ok;Jang, Jong-Hwa
    • Journal of Korean society of Dental Hygiene
    • /
    • v.9 no.1
    • /
    • pp.59-71
    • /
    • 2009
  • Objectives : The purpose of this study is to devise a way of the dental hygienist to explore the articles of dental hygienist that were presented in the newspaper during the recent 3 years of Korea. Methods : This study is to examine dental hygienist articles with content analysis in the KINDS(Korean Integrated News Database System) of the Korean Press Foundation. Data were gathered from the printed newspaper of Korea over a period of 3 years - 1 March, 2005 to 30 March 2008. News reports, comments and letters to the editor were analysed, which revealed an image of dental hygienist that we would like to explore and debate. The obtained data from the frequency, percentage, chi-squared test between categories after inter-coder reliability test (reliability 0.96). Results : The articles of dental hygienist according to type of newspaper, 'local newspaper' showed higher frequency than 'metropolitan newspaper'. It mix '치과위생사'(42.3%), '치위생사'(49.4%), and '위생사'(3.9%) in use of name. The article pattern, 'news' 40.0%, 'information commentary' 18.3%, 'interview man' 15.8%, 'special news' 14.2% in metropolitan newspaper, then, 'news' 72.6%, 'information commentary' 23.2% in local newspaper (p<0.05). Most plenty of subject is 'administration system', and then 'celebration', 'publicity'. It showed 'seoul' was 'information commentary', 'country' was 'administration system', 'whole' was 'legal duty', 'unrelated area' was 'social living' in the topic of article according to newsbeat(p<0.05). Conclusions : These results suggest that it is necessary to publicity name, duty of dental hygienist in metropolitan newspaper officially.

  • PDF

A comparative study of news media coverage on the presidential candidate's commitments: applying Content Analysis method (대통령후보 공약에 대한 언론보도 비교연구: 보수적 언론과 진보적 언론의 내용분석을 중심으로)

  • Hong, Yong-Rak
    • Journal of Digital Convergence
    • /
    • v.15 no.11
    • /
    • pp.85-95
    • /
    • 2017
  • The news media report the pledges of presidential candidates, which have important implications for political communication. This study is to investigate the difference between news coverage on the presidential candidate' s pledge and to discuss its implications. The sampled news from the two newspapers were analyzed for content analysis. Frequency analysis and Chi-square analysis are utilized with SPSS. As results, there was no difference in the tone of the article's headlines, but the difference of the tone between the article content was statistically significant. The results means that the media framing affect on the reader's perception. Follow - up study can be suggested a comparative study of past election candidates 'pledge reports, a network analysis for the news language, and a comparative analysis of newspaper coverage and broadcast coverage.