• 제목/요약/키워드: Newmark displacement model

검색결과 49건 처리시간 0.032초

A THERMO-ELASTO-VISCOPLASTIC MODEL FOR COMPOSITE MATERIALS AND ITS FINITE ELEMENT ANALYSIS

  • Shin, Eui-Sup
    • Journal of Theoretical and Applied Mechanics
    • /
    • 제3권1호
    • /
    • pp.45-65
    • /
    • 2002
  • A constitutive model on oorthotropic thermo-elasto-viscoplasticity for fiber-reinforced composite materials Is illustrated, and their thermomechanical responses are predicted with the fully-coupled finite element formulation. The unmixing-mixing scheme can be adopted with the multipartite matrix method as the constitutive model. Basic assumptions based upon the composite micromechanics are postulated, and the strain components of thermal expansion due to temperature change are included In the formulation. Also. more than two sets of mechanical variables, which represent the deformation states of multipartite matrix can be introduced arbitrarily. In particular, the unmixing-mixing scheme can be used with any well-known isotropic viscoplastic theory of the matrix material. The scheme unnecessitates the complex processes for developing an orthotropic viscoplastic theory. The governing equations based on fully-coupled thermomechanics are derived with constitutive arrangement by the unmixing-mixing concept. By considering some auxiliary conditions, the Initial-boundary value problem Is completely set up. As a tool of numerical analyses, the finite element method Is used with isoparametric Interpolation fer the displacement and the temperature fields. The equation of mutton and the energy conservation equation are spatially discretized, and then the time marching techniques such as the Newmark method and the Crank-Nicolson technique are applied. To solve the ultimate nonlinear simultaneous equations, a successive iteration algorithm is constructed with subincrementing technique. As a numerical study, a series of analyses are performed with the main focus on the thermomechanical coupling effect in composite materials. The progress of viscoplastic deformation, the stress-strain relation, and the temperature History are careful1y examined when composite laminates are subjected to repeated cyclic loading.

  • PDF

변위제한조건식과 안정화된 Penalty방법에 의한 차량 주행에 따른 구조물의 동적상호작용 해석기법 (Simulation of Vehicle-Structure Dynamic Interaction by Displacement Constraint Equations and Stabilized Penalty Method)

  • 정근영;이성욱;민경주
    • 대한토목학회논문집
    • /
    • 제26권4D호
    • /
    • pp.671-678
    • /
    • 2006
  • 본 연구에서는 2개의 질량을 갖는 1/4 차량모델을 이용하여 차량-궤도-교량간의 동적상호작용 현상을 표현하기 위해 비선형 헤르츠 접촉스프링(Nonlinear Hertzian Contact Spring)과 비선형 접촉감쇠장치(Nonlinear Contact Damper)를 도입하였다. 또한, 차량에 작용하는 하중은 차량의 중량외에 임의시간단계의 차륜재하위치인 레일답면(즉, 주행로상의 접촉면)에서의 변위가 제한조건식(Constraint Equation)으로 가해졌다. 이 변위제한조건식은 Penalty방법(Penalty Method)에 의해 구현되었으며, 해의 안정화(Stabilization)를 위한 기법과 제한조건오차보정반력(Reaction from Constraint Violation)을 도입하였다. 또한, 차량의 피칭운동을 표현하고, 다양한 차량/열차를 모형화하기 위해서 1/4 차량모델의 차체 및 대차프레임 간을 강체연결 및 핀이 있는 강체연결조건으로 모형화하였다. 시간적분방법으로는 Newmark계열의 시간적분법이 사용되었으며, 해의 정확성 확보를 위해 국지적 오차평가에 근거한 적응적시간간격기법(Adaptive Time-Stepping Scheme)을 도입하였다. 이러한 적응적시간간격기법을 도입하여 동적해석에서 시간간격의 크기를 자동적으로 결정함으로써 동적해석에서의 해의 정확성을 확보하고 시간적분에 소요되는 계산비용을 감소시킬 수 있을 것으로 기대된다.

측정 가속도 증분을 사용한 비선형 SI 기법의 개발 (Development of a Nonlinear SI Scheme using Measured Acceleration Increment)

  • 신수봉;오성호;최광규
    • 한국지진공학회논문집
    • /
    • 제8권6호통권40호
    • /
    • pp.73-80
    • /
    • 2004
  • 구조물의 손상 진단을 위해 측정 가속도 데이터를 사용한 비선형 시간영역 SI 알고리듬을 개발하였다. 구조물의 비선형 거동을 고려하기 위하여 측정 가속도 증분과 해석에 의한 가속도 증분의 차이로 출력오차를 정의하고, 구속 비선형 최적화 문제를 풀어 최적 구조변수를 구하였다. 개발된 알고리듬은 시간에 따라 변하는 강성도와 감쇠 변수를 추정하도록 하였다. 구조물의 비선형 거동에 의한 복원력은 추정된 시간에 따라 변하는 구조변수와 Newmark-$\beta$법으로 계산한 변위를 사용하여 복원하였으며, 복원 과정에서 비탄성 거동에 대한 어떤 모델도 사전에 설정하지 않았다. 개발한 알고리듬에서는 측정오차와 공간 및 상태에 대한 불완전 측정의 경우를 고려하였다. 개발한 알고리듬을 검증하기 위하여 3층 전단건물에 대한 수치 모의시험과 실내 모형실험을 통한 연구를 수행하였다.

Assessment of 3D earthquake response of the Arhavi Highway Tunnel considering soil-structure interaction

  • Sevim, Baris
    • Computers and Concrete
    • /
    • 제11권1호
    • /
    • pp.51-61
    • /
    • 2013
  • This paper describes earthquake response of the Arhavi Highway Tunnel its geometrical properties, 3D finite element model and the linear time history analyses under a huge ground motion considering soil-structure interaction. The Arhavi Highway Tunnel is one of the tallest tunnels constructed in the Black Sea region of Turkey as part of the Coast Road Project. The tunnel has two tubes and each of them is about 1000 m tall. In the study, lineartime history analyses of the tunnel are performed applying north-south, east-west and up accelerations components of 1992 Erzincan, Turkey ground motion. In the time history analyses, Rayleigh damping coefficients are calculated using main natural frequency obtained from modal analysis. Element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motion. Because of needed too much memory for the analyses, the first 10 second of the ground motions, which is the most effective duration, is taken into account in calculations. The results obtained 3D finite element model are presented. In addition, the displacement and stress results are observed to be allowable level of the concrete material during the earthquakes.

Use of infinite elements in simulating liquefaction phenomenon using coupled approach

  • Kumari, Sunita;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • 제2권4호
    • /
    • pp.375-387
    • /
    • 2013
  • Soils consist of an assemblage of particles with different sizes and shapes which form a skeleton whose voids are filled with water and air. Hence, soil behaviour must be analyzed by incorporating the effects of the transient flow of the pore-fluid through the voids, and therefore requires a two-phase continuum formulation for saturated porous media. The present paper presents briefly the Biot's basic theory of dynamics of saturated porous media with u-P formulation to determine the responses of pore fluid and soil skeleton during cyclic loading. Kelvin elements are attached to transmitting boundary. The Pastor-Zienkiewicz-Chan model has been used to describe the inelastic behavior of soils under isotropic cyclic loadings. Newmark-Beta method is employed to discretize the time domain. The response of fluid-saturated porous media which are subjected to time dependent loads has been simulated numerically to predict the liquefaction potential of a semi-infinite saturated sandy layer using finite-infinite elements. A settlement of 17.1 cm is observed at top surface. It is also noticed that liquefaction occurs at shallow depth. The mathematical advantage of the coupled finite element analysis is that the excess pore pressure and displacement can be evaluated simultaneously without using any empirical relationship.

Damped dynamic responses of a layered functionally graded thick beam under a pulse load

  • Asiri, Saeed A.;Akbas, Seref D.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.713-722
    • /
    • 2020
  • This article aims to illustrate the damped dynamic responses of layered functionally graded (FG) thick 2D beam under dynamic pulse sinusoidal load by using finite element method, for the first time. To investigate the response of thick beam accurately, two-dimensional plane stress problem is assumed to describe the constitutive behavior of thick beam structure. The material is distributed gradually through the thickness of each layer by generalized power law function. The Kelvin-Voigt viscoelastic constitutive model is exploited to include the material internal damping effect. The governing equations are obtained by using Lagrange's equations and solved by using finite element method with twelve -node 2D plane element. The dynamic equation of motion is solved numerically by Newmark implicit time integration procedure. Numerical studies are presented to illustrate stacking sequence and material gradation index on the displacement-time response of cantilever beam structure. It is found that, the number of waves increases by increasing the graduation distribution parameter. The presented mathematical model is useful in analysis and design of nuclear, marine, vehicle and aerospace structures those manufactured from functionally graded materials (FGM).

곡선교량-AGT 차량의 상호작용에 의한 동적 거동에 관한 연구 (A Study on the Dynamic Interaction Analysis of Curved Bridge-AGT Vehicle)

  • 이안호;김기봉;김재민
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.376-381
    • /
    • 2003
  • This study is focused on the dynamic response of curved bridge when the rubber tired AGT vehicles is running with alternative articulations. For the analytic approach, there is necessary for the three dimensional vehicle model with 11 degree of freedom and the three dimensional curved bridge model by means of finite element method. It can be described by conventional Lagrangian formula with respect to the dynamic interactions between vehicles and its met bridge. The formula is implemented by Fortran language on the simulation program designated BADIA II(Bridge-AGT Dynamic Interaction Analysis II). The solutions of the formula are derived by Newmark- ${\beta}$ method. The BADIA II is for the dynamic interactions between vehicle and curved bridge in terms of the roughness of running surface and guide rail. The applicability of the BADIA II is verified in terms of displacement and modal frequency. This study is described that the dynamic interactive behaviors between the rubber tired AGT vehicle and curved bridge in terms of the radius of curvatures of curved bridge, vehicle articulations, vehicle speeds, vehicle weights, flatness of running surface and roughness of guide rail using BADIA II.

  • PDF

An effective locally-defined time marching procedure for structural dynamics

  • Sofiste, Tales Vieira;Soares, Delfim Jr;Mansur, Webe Joao
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.65-73
    • /
    • 2020
  • The present work describes a new time marching procedure for structural dynamics analyses. In this novel technique, time integration parameters are automatically evaluated according to the properties of the model. Such parameters are locally defined, allowing the user to input a numerical dissipation property for each element, which defines the amount of numerical dissipation to be introduced. Since the integration parameters are locally defined as a function of the structural element itself, the time marching technique adapts according to the model, providing enhanced accuracy. The new methodology is based on displacement-velocity relations and no computation of accelerations is required. Furthermore, the method is second order accurate, it has guaranteed stability, it is truly self-starting and it allows highly controllable algorithm dissipation in the higher modes. Numerical results are presented and compared to those provided by the Newmark and the Bathe methods, illustrating the good performance of the new time marching procedure.

연약지반 직렬 무한궤도 주행차량의 선회특성 연구 (A Study on the Steering Characteristics of Tandem Tracked Vehicle on Extremely Cohesive Soft Soil)

  • 김형우;이창호;홍섭;최종수;여태경;김시문
    • Ocean and Polar Research
    • /
    • 제32권4호
    • /
    • pp.361-367
    • /
    • 2010
  • The principal objective of this paper was to evaluate the steering characteristics of a tandem tracked vehicle, each side of which features two tandem tracks, when crawling on extremely cohesive soft soil. The tandem tracked vehicle is assumed to be a rigid-body with 6-dof. The dynamic analysis program of the tandem tracked vehicle was developed via Newmark's method and the incremental-iterative method. A terra-mechanics model of extremely cohesive soft soil was implemented according to the relationships of normal pressure to sinkage, of shear resistance to shear displacement, and of dynamic sinkage to shear displacement. In order to simplify the characteristics of contact interaction between track segments and cohesive soft soil, the characteristics of soil are equated to the properties of intact soil. In an effort to evaluate the steering characteristics of a tandem tracked vehicle crawling on extremely cohesive soft soil, a series of dynamic simulations were conducted for a tandem tracked vehicle model with respect to the front and rear steering angle, the steering ratio, and the initial velocity.

Stability of suspension bridge catwalks under a wind load

  • Zheng, Shixiong;Liao, Haili;Li, Yongle
    • Wind and Structures
    • /
    • 제10권4호
    • /
    • pp.367-382
    • /
    • 2007
  • A nonlinear numerical method was developed to assess the stability of suspension bridge catwalks under a wind load. A section model wind tunnel test was used to obtain a catwalk's aerostatic coefficients, from which the displacement-dependent wind loads were subsequently derived. The stability of a suspension bridge catwalk was analyzed on the basis of the geometric nonlinear behavior of the structure. In addition, a full model test was conducted on the catwalk, which spanned 960 m. A comparison of the displacement values between the test and the numerical simulation shows that a numerical method based on a section model test can be used to effectively and accurately evaluate the stability of a catwalk. A case study features the stability of the catwalk of the Runyang Yangtze suspension bridge, the main span of which is 1490 m. Wind can generally attack the structure from any direction. Whenever the wind comes at a yaw angle, there are six wind load components that act on the catwalk. If the yaw angle is equal to zero, the wind is normal to the catwalk (called normal wind) and the six load components are reduced to three components. Three aerostatic coefficients of the catwalk can be obtained through a section model test with traditional test equipment. However, six aerostatic coefficients of the catwalk must be acquired with the aid of special section model test equipment. A nonlinear numerical method was used study the stability of a catwalk under a yaw wind, while taking into account the six components of the displacement-dependent wind load and the geometric nonlinearity of the catwalk. The results show that when wind attacks with a slight yaw angle, the critical velocity that induces static instability of the catwalk may be lower than the critical velocity of normal wind. However, as the yaw angle of the wind becomes larger, the critical velocity increases. In the atmospheric boundary layer, the wind is turbulent and the velocity history is a random time history. The effects of turbulent wind on the stability of a catwalk are also assessed. The wind velocity fields are regarded as stationary Gaussian stochastic processes, which can be simulated by a spectral representation method. A nonlinear finite-element model set forepart and the Newmark integration method was used to calculate the wind-induced buffeting responses. The results confirm that the turbulent character of wind has little influence on the stability of the catwalk.