• Title/Summary/Keyword: NewWave

Search Result 2,154, Processing Time 0.031 seconds

Generation of Freak Waves in a Numerical Wave Tank and Its Validation in Wave Flume (수치파 수조에서의 극치파 생성과 수조실험을 통한 검증 연구)

  • Jeong, Seong-Jae;Park, Seong-Wook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.488-497
    • /
    • 2009
  • The freak wave, also known as New-Year-Wave in the north Atlantic, is relatively large and spontaneous ocean surface wave that can sink even large ships and destroy maritime structures. To understand oceanic conditions that develop freak waves, we simulated and generated two versions of scale-downed waves (1:64 and 1:42) in a numerical wave tank and compared the results with the experiment in wave flume. Both of the breaking and non-breaking waves were generated in the simulation. The numerical simulation was implemented based on the finite volume method and a genetic optimization algorithm. Random values were assigned as the initial values for the parameter in the control function, which produced signals representing the motion of wave-maker. The same signal obtained from the optimization process was used for both of the simulation and the experiment. By varying the object function and restrictions of the simulation, a best profile of design wave was selected based on the characteristics, height and period of simulated waves. Results showed that the simulation and experiment with the scale of 1:42 agreed better with freak waves in the natural condition. The presented simulation method will contribute to saving the time and cost for conducting subsequent response analyses of motion under freak waves in the course of the model test for ship and maritime structure.

Wave Reflections from Breakwaters Having Resonance Channels with Perforated Plates (유공판을 갖는 공진수로 내장형 방파제의 반사특성)

  • Kim, Jeongseok;Seo, Jihye;Lee, Younghoon;Lee, Joongwoo;Park, Woosun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.149-150
    • /
    • 2013
  • Recently, various types of perforated breakwaters are being constructed for protecting offshore storm waves. In general, perforated breakwaters have wave chambers with perforated walls at seaside. Purposes of the wave chambers are to reduce wave reflections and maximum wave forces acting on the breakwater. Impact wave forces due to wave breaking can attack to the perforated wall directly, so the effects have to be considered in the design of the perforated wall carefully. Using resonance channels for wave energy dissipation, a new concept perforated breakwater is proposed, which is free from impact loads. Numerical simulation was made for wave reflection characteristics of the breakwater with respect to major design parameters. Numerical analysis was carried out using the Galerkin's FE model based on the linear potential theory considering energy dissipation on the perforated plate. Variations of wave reflection was investigated according to perforated ratios of perforated plate.

  • PDF

Airside Performance of Fin-and-Tube Heat Exchangers Having Round Wave Fins (둥근 웨이브 핀-관 열교환기의 공기 측 전열 성능)

  • Kim, Nae-Hyun
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.105-116
    • /
    • 2015
  • In this study, airside performance of round fin-and-tube heat exchangers are compared with that of the herringbone wave fin-and-tube heat exchangers with an aim to investigate the effect of fin shape on thermal performance. Results show that j factors of the round wave fin are 1.2~22% larger than those of herringbone wave fin. The f factors of the round wave fin are -1.0~29% smaller than those of herringbone wave fin for 1 or 2 row configuration. For 3 row configuration, f factors of the round wave fin are 8.3~23% larger. The reason may be attributed to the reduced recirculation zone in the valley of the fin for round wave fin as compared with that of the herringbone wave fin. For round wave fin, the effect of fin pitch on j and f factor is not significant. In addition, j factors decrease as the number of tube row increases. On the other hand, f factors are independent of the number of tube row. A new correlation was developed based on the present data.

Wave propagation in a concrete filled steel tubular column due to transient impact load

  • Ding, Xuanming;Fan, Yuming;Kong, Gangqiang;Zheng, Changjie
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.891-906
    • /
    • 2014
  • This study aims to present a three dimensional finite element model to investigate the wave propagation in a concrete filled steel tubular column (CFSC) due to transient impact load. Both the concrete and steel are regarded as linear elastic material. The impact load is simulated by a semi sinusoidal impulse. Besides the CFSC models, a concrete column (CC) model is established for comparing under the same loading condition. The propagation characteristics of the transient waves in CFSC are analyzed in detail. The results show that at the intial stage of the wave propagation, the velocity waves in CFSC are almost the same as those in CC before they arrive at the steel tube. When the waves reach the column side, the velocity responses of CFSC are different from those of CC and the difference is more and more obvious as the waves travel down along the column shaft. The travel distance of the wave front in CFSC is farther than that in CC at the same time. For different wave speeds in steel and concrete material, the wave front in CFSC presents an arch shape, the apex of which locates at the center of the column. Differently, the wave front in CC presents a plane surface. Three dimensional effects on top of CFSC are obvious, therefore, the peak value and arrival time of incident wave crests have great difference at different locations in the radial direction. High-frequency waves on the waveforms are observed. The time difference between incident and reflected wave peaks decreases significantly with r/R when r/R < 0.6, however, it almost keeps constant when $r/R{\geq}0.6$. The time duration between incident and reflected waves calculated by 3D FEM is approximately equal to that calculated by 1D wave theory when r/R is about 2/3.

Analysis on the Characteristics of the Infra-Gravity Waves inside and outside Pohang New Harbor using a Transfer Function Model (전달함수 모형을 이용한 포항신항 내·외의 외중력파 특성 분석)

  • Cho, Hong-Yeon;Jeong, Weon Mu;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.131-139
    • /
    • 2014
  • Infra-gravity waves (IGWs) with a period of 1~3 minutes are a factor that directly influences the motion analysis of moored ships inside a harbor and longshore sediment transport analysis. If significant levels of IGWs from far seas are transferred to a harbor and amplified, they may cause downtime of large ships and induce economic loss. In this study, transfer characteristics of the IGWs intruding from outside to inside Pohang New Harbor were analyzed using statistical analysis and transfer function of wave data measured at both outside and inside the harbor for around 5 years. Transfer characteristic analysis was limited to events where IGWs had wave heights above 0.1 m. The wave height distribution of inside the harbor was similar to that of outside the harbor, while the wave period variance of the former was larger than that of the latter. The parameters of the transfer function was optimally estimated according to each event. The estimated average RMS error of the wave height inside the harbor was around 0.013 m. The estimated parameters had a strong correlation with the linear combination information of IGW wave height, period, and direction (R = 0.95). The transfer function suggested in this study can quickly and easily estimate information on IGWs inside the harbor using IGW information predicted beforehand, and is expected to reduce damage due to unexpected restrictions on harbor usage.

Stability of Explicit Symplectic Partitioned Runge-Kutta Methods

  • Koto, Toshiyuki;Song, Eunjee
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic methods for long-term integration. Although it is also related to long-term integration, numerical stability of symplectic methods have received little attention. In this paper, we consider explicit symplectic methods defined for Hamiltonian equations with Hamiltonians of the special form, and study their numerical stability using the harmonic oscillator as a test equation. We propose a new stability criterion and clarify the stability of some existing methods that are visually based on the criterion. We also derive a new method that is better than the existing methods with respect to a Courant-Friedrichs-Lewy condition for hyperbolic equations; this new method is tested through a numerical experiment with a nonlinear wave equation.

Control of Three Phase VSI using Fundamental Data of the Carrier and Signal for Reducing the THO (반송파와 신호파의 기본 데이터를 이용한 3상 전압형 인버터의 THD 저감 제어)

  • Kim, Yeong-Min;Hwang, Jong-Sun;Kim, Jong-Man;Park, Hyun-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.34-37
    • /
    • 2001
  • This research suggested the new algorithm controlled by micro processor which is already stored by various PWM form of output voltage by using fundamental data of the carrier and signal. The determined PWM pattern is not concerned with the signal wave form and the new algorithm can obtain the desired pulse width by synchronous of carrier. The PWM wave can be controlled with real time by using extra hardware and digital software and to speed up program processing, the control signals to switch the power semi-conductor of three phase PWM inverter, simultaneously use the output signal by microprocessor and extra hardware, and control signal by software. In the end, this method was proved by applying to Three phase voltage source inverter.

  • PDF

New coefficients to find natural period of elevated tanks considering fluid-structure-soil interaction effects

  • Maedeh, Pouyan Abbasi;Ghanbari, Ali;Wu, Wei
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.949-963
    • /
    • 2017
  • The main purpose of the current study is to develop the new coefficients for consideration of soil-structure interaction effects to find the elevated tank natural period. Most of the recommended relations to find the natural period just assumed the fixed base condition of elevated tank systems and the soil effects on the natural period are neglected. Two different analytical systems considering soil-structure- fluid interaction effects are recommended in the current study. Achieved results of natural impulsive and convective period, concluded from mentioned models are compared with the results of a numerical model. Two different sets of new coefficients for impulsive and convective periods are developed. The values of the developed coefficients directly depend to soil stiffness values. Additional results show that the soil stiffness not only has significant effects on natural period but also it is effective on liquid sloshing wave height. Both frequency content and soil stiffness have significant effects on the values of liquid wave height.

A New Injection Method of Harmonic Compensation Current by Active AC Power Filter (능동형 교류 전력 필터에 의한 고조파 보상전류의 새로운 주입방식)

  • 박민호;최규하
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.361-367
    • /
    • 1985
  • A new injection method is proposed for active power filters to eliminate AC harmonics in ac input current of nonlinear loads such as rectifiers. By injecting the PWM current determined by the proposed injection method, all the harmonics up to order nn can be eliminated to exactly zero. This PWM injection current can be generated by sampling total harmonic wave at the rate of M and the sampled values are converted into the proposed PWM wave with N pulse-width variables and adjustable current magnitude Im. These variables are deetermined by solving a set of N nonlinear harmonic equations and the harmonic-elimination characteristics of the new injection are investigated through digital computer sinmulation. Also by comparing between the simulated results and the ones synthesized by data stored in EPROM, the possibility of the suggested injection method can be shown.

  • PDF

A new pitch-catch method for structural damage detection (구조손상 검출을 위한 새로운 Pitch-catch 기법)

  • Choi, Jung-Sik;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.148-151
    • /
    • 2009
  • In these days it is important to secure the life and stability of the structure such as aircrafts, automobiles and building. So the structural health monitoring is needed. In conventional lamb wave techniques, damage is identified by comparing the measured data (baseline signals) and the current data. But this method can lead to high false signal in the intact condition of the structure due to environmental conditions of the structure. As a solution to resolve it, the structural health monitoring method which doesn't use baseline signals is necessary. Damaged structure has unusual elastic wave. This paper proposed a PC(pitch-catch) method which doesn't use baseline signal. New baseline signals can get from detection signal. Damage signals based on new baseline signals. This paper made an image includes damage information by applying damage-signals to beamformming.

  • PDF