• Title/Summary/Keyword: New superconductor

Search Result 44, Processing Time 0.023 seconds

Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage (전기 에너지 저장을 위한 초전도 나노 합성 기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Superconductor Flywheel Energy Storage system with A Horizontal Axle (고온초전도 베어링을 이용한 수평축 플라이휠에너지 저장장치 시스템)

  • 성태현;이준성;한영희;한상철;최상규;김영철;김상준
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.50-55
    • /
    • 2001
  • A new type of flywheel energy storage system that has a horizontal axle with High $T_c$, superconductor bearings using Y123 single-domained crystals was developed.The dynamic Properties, stiffness and damping of the high $T_c$, superconductor radial bearings were experimentally estimated using a imbalance excitation method. The imbalance excitation method applied to this rotor- bearing system identified the identified stiffness and damping of the high temperature superconductor beatings to be 2.8 $3.3 {\times} 10^5 N/m and 775 204$ Nsec/m respectively.

  • PDF

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication of High Tc Superconducting Nano Powder Using Chemical Process (화학공정을 이용한 초전도 나노 분말 활성)

  • Lee, Sang-Heon;Kim, Chan-Jung;Jang, Kun-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.547-548
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

  • PDF

A Japanese National Project for Superconductor Network Devices

  • Hidaka, M.
    • Progress in Superconductivity
    • /
    • v.5 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • A five-year project for Nb-based single flux quantum (SFQ) circuits supported by Japan's Ministry of Economy Trade and Industry (METI) in Japan was started in September 2002. Since April 2003, the New Energy and Industrial Technology Development Organization (NEDO) has supported this Superconductor Network Device Project. The aim of the project is to improve the integration level of Nb-based SFQ circuits to several ten thousand Josephson junctions, in comparison with their starting integration level of only a few thousand junctions. Actual targets are a 20 GHz dual processor module for the servers and a 0.96 Tbps switch module for the routers. Starting in April 2003, the Nb project was merged with SFQ circuit research using a high-T$_{c}$ superconductor (HTS). The HTS research targets are a wide-band AD converter for mobile-phone base stations and a sampling oscilloscope for wide-band waveform measurements.

  • PDF

Synthesis of a new (Ta1-xSnx)Sr2EuCu2Oz superconductor

  • Kim, G.W.;Lee, H.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.2
    • /
    • pp.33-35
    • /
    • 2014
  • We report here results of a study of superconductivity in the ($Ta_{1-x} Sn_x)Sr_2EuCu_2O_z$ system. We observe resistive superconducting transitions for the samples with x = 0.15-0.3, and the highest superconducting transition has been achieved for the sample with x = 0.2 which reveals onset $T_c$ of 43 K and zero-resistivity of 25 K. Thermoelectric power measurements indicate that Sn doping introduces holes into the system and thereby superconductivity can be achieved in the ($Ta_{1-x} Sn_x)Sr_2EuCu_2O_z$ system.

A Study on Stirling Cryocooler for Precooling Hydrogen Liquefier (수소액화 예냉용 소형 스털링 극저온 냉동기 특성 연구)

  • PARK, SEONGJE;KO, JUNSEOK;HONG, YONGJU;KIM, HYOBONG;YEOM, HANKIL;IN, SEHWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2016
  • Korea Institute of Machinery & Materials (KIMM) has developed a high efficient Stirling cryocooler with moving magnet linear compressor for precooling hydrogen liquefier and cooling high temperature superconductor (HTS) devices, such as superconductor cable and superconductor fault current limiters. Hydrogen liquefier and HTS electric devices require cryocooler with cooling capacity of hundred watts to kilowatts at 77 K. The compressor in the Stirling cryocooler uses opposed moving magnet linear motors to drive opposed pistons. High efficient Stirling cryocooler is designed by SAGE-software, manufactured and tested systematically. A cooling capacity of 1 kW at 77 K with an electric input power of 9.6 kW has been analyzed. But prototype test results of the Stirling cryocooler have the cooling capacity of 0.65 kW at 76.8 K with an electric input power of 8.1 kW. And then, 21.5% Carnot COP (Coefficient of performance) of the prototype Stirling cryocooler is achieved. The comparison analysis between SAGE-model and experimental results has shown the direction for further design optimization of the Stirling cryocooler.

Comparison of the Existing Wet Etching and the Dry Etching with the ICP Process Method (새로운 ICP 장치를 이용한 고온 초전도체의 Dry Etching과 기존의 Wet Etching 기술과의 비교)

  • 강형곤;임성훈;임연호;한윤봉;황종선;한병성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.158-162
    • /
    • 2001
  • In this report, a new process for patterning of YBaCuO thin films, ICP(inductively coupled plasma) method, is described by comparing with existing wet etching method. Two 100㎛ wide and 2mm long YBaCuO striplines on LaAlO$_3$ substrates have been fabricated using two patterning techniques. And the properties were compared with the critical temperature and the SEM photography. Then, the critical temperatures of two samples were about 88 K, but the cross section of sample using ICP method was shaper than that using the wet etching method. ICP method can be used as a good etching technique process for patterning of YBaCuO superconductor.

  • PDF