• Title/Summary/Keyword: New species identification

Search Result 337, Processing Time 0.024 seconds

Role Identification of Passiflora Incarnata Linnaeus: A Mini Review

  • Kim, Mijin;Lim, Hee-Sook;Lee, Hae-Hyeog;Kim, Tae-Hee
    • Journal of Menopausal Medicine
    • /
    • v.23 no.3
    • /
    • pp.156-159
    • /
    • 2017
  • Some species of traditional herbal medicine has a history of use, most traditional natural herbs have been used for various diseases such as diabetes, hypertension, and obesity. Among them, Passiflora incarnata L. is a traditional natural medicine, flowers as well as berries, roots, and leaves have been used as a medicine. It has been used as a natural medicine for the treatment of insomnia and anxiety for a longtime in Europe, and it has been used primarily for sedation tea in North America. Moreover, Passiflora incarnata L. is widely used anti-asthmatic, analgesic and sedation in Brazil. In other words, Passiflora incarnata L. has been used to treat a sedative, dysmenorrhea, insomnia, cancer, etc. in many countries. Present review of the plants showed a wide range of pharmacological activity in anxiolytic relax the clinical disease, such as anti-inflammatory, anxiety and antioxidant. In addition, Passiflora incarnata L. affects menopause symptoms such as vasomotor symptoms, insomnia, and depression. This review aims to provide the latest information on specific functional components of Passiflora incarnata L. especially the results of clinical trials will provide new insights into opportunities for the future development of natural medicines and doors will be used for purposes of analysis.

Molecular Identification and Technological Properties of Acetic Acid Bacteria Isolated from Malatya Apricot and Home-Made Fruit Vinegars

  • Buyukduman, Eda;Kirtil, Hatice Ebrar;Metin, Banu
    • Microbiology and Biotechnology Letters
    • /
    • v.50 no.1
    • /
    • pp.81-88
    • /
    • 2022
  • Acetic acid bacteria (AAB) are versatile organisms involved in the production of variety of fermented foods, such as vinegar and kombucha, and products of biotechnological relevance, such as bacterial cellulose. In the present study, Malatya apricot, a variety with protected designation of origin (PDO), and vinegar samples produced using various fruits were used to isolate AAB. The 19 AAB isolates obtained were typed using (GTG)5 fingerprinting, and the ones selected were identified by sequencing either 16S rDNA alone or in combination with 16S-23S rRNA internal transcribed spacer region or ligA gene. While all apricot isolates (n = 10) were Gluconobacter cerinus, vinegar isolates (n = 9) were composed of Komagataeibacter saccharivorans, Acetobacter syzygii, and possible two new species of AAB, Komagataeibacter sp., and Gluconobacter sp. (GTG)5 fingerprinting showed the presence of several genotypes of G. cerinus in the apricot samples. Screening for some technologically relevant properties, including thermotolerance, ethanol tolerance, and cellulose production capability, showed that all Komagataeibacter and some Gluconobacter isolates could tolerate the temperature of 35℃, and that vinegar isolates could tolerate up to 8% ethanol. One isolate, Komagataeibacter sp. GUS3 produced bacterial cellulose (1 g/l) and has the potential to be used for cellulose production.

A New Record of Parasitic Wasp, Bitomus indicus (Hymenoptera: Braconidae: Opiinae), from South Korea (한국산 미기록종 Bitomus indicus 에 대한 보고)

  • Yunjong Han;Hyojoong Kim
    • Korean journal of applied entomology
    • /
    • v.62 no.4
    • /
    • pp.365-369
    • /
    • 2023
  • The genus Bitomus Szepligeti, 1910 (Hymenoptera: Braconidae: Opiinae) is known to parasitize in mining flies (Diptera: Agromyzidae), of which four species are recorded in Korea. Bitomus was revised by Fischer (1987, 1994) and recently treated by Papp (1978, 1981) in Korea. Bitomus is distinguished from other genera by the immovably joined second-third or fourth metasomal tergites, forming a carapace. In this study, Bitomus indicus is recognized for the first time in Korea. This study provides a diagnosis, description, distribution, and diagnostic illustrations.

Comprehensive Metatranscriptomic Analysis of Plant Viruses in Imported Frozen Cherries and Blueberries

  • Ga-Eun Lee;Hyo-Jeong Lee;Rae-Dong Jeong
    • The Plant Pathology Journal
    • /
    • v.40 no.4
    • /
    • pp.377-389
    • /
    • 2024
  • The possibility of new viruses emerging in various regions worldwide has increased due to a combination of factors, including climate change and the expansion of international trading. Plant viruses spread through various transmission routes, encompassing well-known avenues such as pollen, seeds, and insects. However, research on potential transmission routes beyond these known mechanisms has remained limited. To address this gap, this study employed metatranscriptomic analysis to ascertain the presence of plant viruses in imported frozen fruits, specifically cherries and blueberries. This analysis aimed to identify pathways through which plant viruses may be introduced into countries. Virome analysis revealed the presence of six species of plant viruses in frozen cherries and blueberries: cherry virus A (CVA), prunus necrotic ringspot virus (PNRSV), prune dwarf virus (PDV), prunus virus F (PrVF), blueberry shock virus (BlShV), and blueberry latent virus (BlLV). Identifying these potential transmission routes is crucial for effectively managing and preventing the spread of plant viruses and crop protection. This study highlights the importance of robust quality control measures and monitoring systems for frozen fruits, emphasizing the need for proactive measures to mitigate the risk associated with the potential spread of plant viruses.

Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production

  • Lim, An Suk;Jeong, Hae Jin;You, Ji Hyun;Park, Sang Ah
    • ALGAE
    • /
    • v.35 no.3
    • /
    • pp.277-292
    • /
    • 2020
  • Omega-3 fatty acids, including eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are polyunsaturated fatty acids beneficial to human health. A limited number of microalgae have been used for commercial omega-3 production, which necessitates the identification of new microalgae with high omega-3 contents. We explored the fatty acid composition and EPA and DHA contents of the mixotrophic dinoflagellate Gymnodinium smaydae fed with the optimal algal prey species Heterocapsa rotundata. Cells of G. smaydae were found to be rich in omega-3 fatty acids. In particular, the DHA content of G. smaydae was 21 mg g-1 dry weight, accounting for 43% of the total fatty acid content. The percentage of DHA in the total fatty acid content of G. smaydae was the highest among the reported microalgae except for Crypthecodinium cohnii. Moreover, to determine if the prey supply interval affected the growth rate of G. smaydae and its fatty acid content, three different prey supply intervals (daily, once every 2 d, and once for 4 d) were tested. Daily prey supply yielded the highest total fatty acid and DHA contents in G. smaydae. Furthermore, we successfully produced high-density G. smaydae cultures semi-continuously for 43 d with daily prey supply. During the semi-continuous cultivation period, the highest density of G. smaydae was 57,000 cells mL-1, with an average growth rate of 0.7 d-1. Taken together, the percentage of EPA and DHA in the total fatty acid content was maintained in the range of 54.2-56.9%. The results of this study support G. smaydae as a promising microalgal candidate for commercial DHA production and demonstrate that daily supply of prey can efficiently produce high-density G. smaydae cultures for more than a month.

Prevalence of Strains Resistant to the Third Generation Cephalosporins among Clinical Isolates and Identification of TEM Type $\beta$-lactamase from Resistant Strains by PCR Method (3 세대 세파계 항생제에 내성인 임상균주의 분포와 PCR 법을 이용한 TEM type $\beta$-lactamase 생산균주의 동정)

  • 김무용;오정인;송혜경;백경숙;곽진환
    • YAKHAK HOEJI
    • /
    • v.39 no.3
    • /
    • pp.276-282
    • /
    • 1995
  • Compared to the first and second-generation cephalosporins, the third-generation cephalosporins are remarkably stable against hydrolysis by the $\beta$-lactamases produced by aerobic gram-negative bacilli, such as Enterobacteriaceae. Among these bacteria, the most prevalent plasmid-encoded $\beta$-lactamase is TEM-1 $\beta$-lactamase belonging to class A or group 2b. This enzyme is produced constitutively and is principally active against peniciflins and old cephalosporins rather than third-generafion cephalosporins, carbapenems and mmobactams. However, new TEM type $\beta$-lactamases including TEM-9 and TEM-12 evolved through point mutations in a gene encoding $\beta$-lactamase have been discovered from patients during chemotherapy. These $\beta$-lactamases are known to be capable of hydrolyzing most of the third-generatim cephalosporins. To study the prevalence of $\beta$-lactamases from clinical isolates collected in Korea. the minimal inhibitory concentratims(MICs) of several third-generation cephalosporins against 628 clinical isolates were determined by agar dilution methods, and $\beta$-lactamas-producing bacteria were isolated by use of cefinase disc. By polymerase chain reaction (PCR) method, clinical isolates harboring a gene for TEM type $\beta$-lactamase were identified among the $\beta$-lactamase producing strains. Twentiy three percent of the clinical isolates was resistant to the thirdgeneration cephalosporins, and more than 90% of resistant cells produced various $\beta$-lactamases. TFM type $\beta$-lactamases were dominant in gram-negative bacilli, such as Escherichia coli, Klebsiella pneumoniae, Enterobacter species. These results suggest the necessity of the development of new cephalosporins which are stable against $\beta$-lactamases like TEM.

  • PDF

Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

  • Lee, Yong-Woo;Cho, Hyung-Joon;Lee, Won-Hee;Sonntag, William E.
    • Biomolecules & Therapeutics
    • /
    • v.20 no.4
    • /
    • pp.357-370
    • /
    • 2012
  • Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tumor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cellular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the identification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defining a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

Traditional Foods: Historical Perspectives and Future Prospects (문화와 과학의 융합적 관점에서 본 전통음식의 역사 및 미래)

  • Kim, Hee Sup
    • Journal of the Korean Society of Food Culture
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Traditional cuisine reflects cooking traditions shaped by political, economic, social, cultural, and environmental conditions characterized by authenticity and uniqueness. Traditional food is not only a part of our cultural heritage but also a knowledge resource. Application of food science and technology in Korean traditional foods was reviewed from six points of view, including food preservation, fermentation, changes in food materials, utilization of food functionality, and packaging and development of cooking appliances. Books from disparate times were chosen in order to cover a wide range of materials from the past to the present. Food preservation and fermentation techniques were applied to various food materials. Combination of science and skills contributes to the accessibility of diverse food materials and better quality foods. Koreans use assorted and resilient plants, which have an abundance of functional substances such as food materials. Among cooking appliances, microwave oven and refrigerator are the most innovative products with huge influences on food eating patterns as well as lifestyle. Packaging effectively reduces post-harvest preservation losses, and better packaging has technical improvements for storage and distribution. Kimchi was chosen as an example in order to study technology from the past to the present. Availability of Kimchi cabbage, enrichment of functional ingredients, identification of useful microbial species, standardization of recipe for commercialization, prevention of texture softening, introduction of salted Kimchi cabbage and Kimchi refrigerators, and packaging were reviewed. The future of traditional foods in the market will be competitive. First, traditional foods market should be maintained to protect the diversity of food materials. Secondly, tailored foods for individuals should be considered using foods with functional properties. Information on health benefits would provide insights into health and traditional food products. Third, speedy transfer of new technology to the traditional food industry is needed to ensure food quality production and new opportunities in the market. Fourth, safety of traditional foods should be ensured without sacrificing the essential characteristics of culturally important foods. Improvement of logistics, distribution, and facility should be carried out. As demand for convenience foods increases, traditional foods should be developed into products.

Rhizospheric-Derived Nocardiopsis alba BH35 as an Effective Biocontrol Agent Actinobacterium with Antifungal and Plant Growth-Promoting Effects: In Vitro Studies

  • Mohamed H. El-Sayed;Abd El-Nasser A. Kobisi;Islam A. Elsehemy;Mohamed A. El-Sakhawy
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.5
    • /
    • pp.607-620
    • /
    • 2023
  • The biocontrol approach using beneficial microorganisms to control crop diseases is becoming an essential alternative to chemical fungicides. Therefore, new and efficient biocontrol agents (BCA) are needed. In this study, a rhizospheric actinomycete isolate showed unique and promising antagonistic activity against three of the most common phytopathogenic fungi, Fusarium oxysporum MH105, Rhizoctonia solani To18, and Alternaria brassicicola CBS107. Identification of the antagonistic strain, which was performed according to spore morphology and cell wall chemotype, suggested that it belongs to the Nocardiopsaceae. Furthermore, cultural, physiological, and biochemical characteristics, together with phylogenetic analysis of the 16S rRNA gene (OP869859.1), indicated the identity of this strain to Nocardiopsis alba. The cell-free filtrate (CFF) of the strain was evaluated for its antifungal potency, and the resultant inhibition zone diameters ranged from 17.0 ± 0.92 to 19.5 ± 0.28 mm for the tested fungal species. Additionally, the CFF was evaluated in vitro to control Fusarium wilt disease in Vicia faba using the spraying method under greenhouse conditions, and the results showed marked differences in virulence between the control and treatment plants, indicating the biocontrol efficacy of this actinomycete. A promising plant-growth promoting (PGP) ability in seed germination and seedling growth of V. faba was also recorded in vitro for the CFF, which displayed PGP traits of phosphate solubilization (48 mg/100 ml) as well as production of indole acetic acid (34 ㎍/ml) and ammonia (20 ㎍/ml). This study provided scientific validation that the new rhizobacterium Nocardiopsis alba strain BH35 could be further utilized in bioformulation and possesses biocontrol and plant growth-promoting capabilities.

Identification and Characterization of Paenibacillus polymyxa DY1 Isolated from Korean Soil with New Antibacterial Activity (새로운 항균활성을 보이는 토양 분리 세균 Paenibacillus polymyxa DY1의 분류와 동정)

  • Shin, Eun-Seok;Lee, Hee-Moo;Lee, Bok-Kwon;Kim, Sung-Hoon;Kwon, Sun-Il;Yoo, Kwan-Hee
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.47-53
    • /
    • 2007
  • The DY1 strain of Gram-positive, rod-shaped bacteria was isolated from the soil sample collected from Daeam mountain, Korea. The culture filtrate of DY1 strain showed a broad spectrum of antimicrobial activity on various pathogenic and food poisoning enteric bacterial species tested in vitro. It showed significant growth-inhibitory effect on Salmonella enterica sp., Shigella sp., pathogenic Escherichia coli, Vibrio cholerae, Vibrio parahemolyticus, and Yersinia enterocolitica. For the identification of the DY1 strain, morphological, biochemical and molecular phylogenetic approaches were performed. The DY1 strain was found to be a member of the genus Paenibacillus on the basis of morphological and biochemical analyses. The 16S rDNA of DY1 showed the highest pairwise identity with Paenibacillus polymyxa with 99.79% (1,413 bp/1,416 bp). The antimicrobial entity from DY1 looked different from preciously reported ones and seems to have a great potential to be further studied as a candidate of new antibiotics to control multi-drug resistant pathogens.