• 제목/요약/키워드: New regeneration energy

검색결과 71건 처리시간 0.026초

에폭사이드와 암모니아의 반응을 이용한 합성아민의 이산화탄소 흡수연구 (The CO2 Absorption of Synthetic Amine using the Ethylene Oxide-Ammonia Reaction)

  • 최정호;윤여일;박성열;백일현;남성찬
    • 한국수소및신에너지학회논문집
    • /
    • 제28권5호
    • /
    • pp.561-569
    • /
    • 2017
  • In this study, a synthetic amine made using the ethylene oxide-ammonia reaction was used as an absorbent to remove carbon dioxide. Existing absorbents were used in a mix in order to improve performance; however, because the ethylene oxide-ammonia reaction generates primary, secondary, and tertiary amines simultaneously, it has the merit that separate mixing of the absorbents was not needed. The performance of carbon dioxide absorption with the synthetic amine was compared to that of MEA. As a result of an experiment, it was determined that the $CO_2$ loading was 1.15 times better than that of MEA (a commonly used amine), while the cyclic capacity was 2.28 times higher. Because the heat of reaction was 1.10 times lower than for MEA, the synthetic amine showed superior performance in terms of absorption and regeneration.

Technique for the Prevention of Inrush Current in a TCC Reactive Power Compensator

  • Yang, Ji-Hoon;Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • 한국산업융합학회 논문집
    • /
    • 제21권4호
    • /
    • pp.149-158
    • /
    • 2018
  • With the propagation and spread of the new regeneration energy and increase in electricity demand, power systems tend to be decentralized, and accordingly, the use of a power system stabilizer tends to expand for the stabilization of the distribution system. Thus, typical power system stabilizer, Static Var Compensator (SVC) is developed on a variety of topologies. In addition, the trend of technology leads from SVC to Static Synchronous Compensator(STATCOM) technology development. Recently, to overcome STATCOM's conversion losses and economic disadvantages, studies of a hybrid method using STATCOM and SVC in parallel have actively been conducted. This study proposes a new Soft-Step Switching method to limit inrush current problematic in Thyristor Controlled Capacitor (TCC) method in SVC function. In addition, to reduce Statcom's capacity, groups of reactive power compensation reactor and condenser for SVC were designed.

Changes in Urban Planning Policies and Urban Morphologies in Seoul, 1960s to 2000s

  • Kim, Sung Hong
    • Architectural research
    • /
    • 제15권3호
    • /
    • pp.133-141
    • /
    • 2013
  • The purpose of this paper is to highlight the main policies of the last half century that have shaped the urban architectural fabric of Seoul today, and explore whether a modified approach might better address the current socioeconomic conditions in Korea. The paper defines and examines urban planning in Korea through an overview of the four main urban project policies implemented in Seoul from the 1960s to the present: Land Readjustment (LR), Housing Site Development (HSD), Urban Redevelopment (UR), and Housing Reconstruction (HR). While the fundamental ideology behind these policies served well during a prolonged period of high economic growth, evidence is growing that these policies are losing steam under today's conditions. A growing legacy of stalled and incomplete urban projects from the mid-2000s-the New Town Project is an example-begs the fundamental question as to whether an alternative urban planning paradigm is needed for Korea in an age of low economic growth, low birth rates and a fossil fuel energy crisis. Through the urban morphologies of the three residential areas in Seoul developed by LR projects, this paper looks at the possibility of urban regeneration through the sustainment of urban architecture in those residential areas that have not been affected by HSD, UR, and HR.

Functionalized Poplar Powder as a Support Material for Immobilization of Enoate Reductase and a Cofactor Regeneration System

  • Li, Han;Cui, Xiumei;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권4호
    • /
    • pp.607-616
    • /
    • 2019
  • In this study, functionalized poplar powder (FPP) was used as a support material for the immobilization of enoate reductase (ER) and glucose-6-phosphate dehydrogenase (GDH) by covalent binding. Under optimal conditions, the immobilization efficiency of ER-FPP and GDH-FPP was 95.1% and 84.7%, and the activity recovery of ER and GDH was 47.5% and 37.8%, respectively. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis indicated that FPP was a suitable carrier for enzyme immobilization. ER-FPP and GDH-FPP exhibit excellent thermal stabilities and superior reusability. Especially, ER-FPP and GDH-FPP enable the continuous conversion of 4-(4-Methoxyphenyl)-3-buten-2-one with $NAD^+$ recycling. While the immobilization strategies established here were simple and inexpensive, they exploited a new method for the immobilization and application of ER and its cofactor recycling system.

알지네이트 기반 분사형 하이드로겔 개발 및 용기 적용에 대한 기술적합성 평가 (Development of Alginate-based Spray-type Hydrogel and Evaluation of Technical Compatibility for Container Application)

  • 주용준;전희경;최정연;홍경식
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권1호
    • /
    • pp.64-72
    • /
    • 2023
  • Initial burn wound care is one of the important factors in the outcome of burn treatment. In this study, we tried to develop spray-type alginate hydrogel dressing with advantages such as promoting wound healing, reducing pain, and increasing ease of use for emergency burn treatment. Spray implementation, physical properties, and cytotoxicity of the newly developed spray-type alginate hydrogel dressing were evaluated. As a result, a new functional spray-type hydrogel dressing with excellent physical properties and biocompatibility was developed along with the development of spray able containers, and it was confirmed that it could be applied as a treatment for skin regeneration in the future.

신재생 에너지 중소기업의 맞춤형 경영성과 측정지표 개발 (Developing Customized Management Performance Index for Small and Medium Enterprises in the Solar Energy Industry)

  • 이희천;위도영;이종환
    • 디지털융복합연구
    • /
    • 제10권11호
    • /
    • pp.127-136
    • /
    • 2012
  • 본 연구는 신재생 에너지 사업인 태양광 분야의 맞춤형 경영성과측정지표를 개발하였다. 경영성과측정지표를 도출하기 위하여 첫 번째로 델파이(Delphi)기법과 관련연구 분석을 통해 태양광 분야 기업들의 경제적, 기술적, 환경적, 사회적, 사업수행능력, 사업인프라 부분의 주요성과지표들을 산출하였다. 두 번째로 주요성과지표들의 가중치 산정에 관한 연구에서는 AHP(Analytic Hierarchy Process)기법을 적용하여 주요성과지표들 간의 가중치를 산정하여 최종적으로 주요 경영성과지표를 도출하였다. 본 연구를 통하여 향후 신 성장 동력사업인 태양광 분야 기업들의 경영성과 측정지표를 도출하여 경영성과지표를 통한 측정과 관리를 수행할 수 있을 것이라 기대된다.

저온 열원 발전을 위한 암모니아-물 랭킨 사이클과 칼리나 사이클의 성능특성의 비교 해석 (Comparative Performance Analysis of Ammonia-Water Rankine Cycle and Kalina Cycle for Recovery of Low-Temperature Heat Source)

  • 김경훈;배유근;정영관;김세웅
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.148-154
    • /
    • 2018
  • This paper presents a comparative analysis of thermodynamic performance of ammonia-water Rankine cycles with and without regeneration and Kalina cycle for recovery of low-temperature heat source. Special attention is paid to the effect of system parameters such as ammonia mass fraction and turbine inlet pressure on the characteristics of the system. Results show that maximum net power can be obtained in the regenerative Rankine cycle for high turbine inlet pressures. However, Kalina cycle shows better net power and thermal efficiency for low turbine inlet pressures, and the optimum ammonia mass fractions of Kalina cycle are lower than Rankine cycles.

Pd-MIS 소자의 수소가스 검지 특성 (Characteristics of Pd-MIS devices on hydrogen gas sensing)

  • 이철환;조원일;신치범;윤경석;주재백
    • 한국수소및신에너지학회논문집
    • /
    • 제3권2호
    • /
    • pp.17-24
    • /
    • 1992
  • Hydrogen gas sensors were fabricated after the form of metal/insulator/semiconductor(MIS) structure on a p-type silicon wafer and a insulating layer (silicon dioxide) thickness was changed from $500{\AA}$ to $5000{\AA}$. Their electrical properties were investigated with the variation of the hydrogen gas concentration at room temperature. At the applied forward bias of lV to both ends of Pd-MIS sensors the current was decreased logarithmically with the increase of hydrogen concentration in air. In the case of a thin $SiO_2$ layered ($500{\AA}$) sensor the current ratio was decreased to 25 % at 1 % of hydrogen concentration in air and 50% for a thick $SiO_2$ layered ($5000{\AA}$) sensor. And the response time of the thick insulating layered sensor to 1% hydrogen containing air was about 50 seconds and regeneration time was 2.5 minutes. When a 0.5mA current was appied to the thick insulating layered sensor the maximun voltage shift was calculated to 0.8V in the case of ${\theta}$ = 1 and the Pd surface coverage of hydrogen was increased logarithmically with hydrogen partial pressure.

  • PDF

암모니아 반응기의 분해 효율 최적화를 통한 암모니아 분해 및 수소 정제 공정 모델 연구 (Optimization of Ammonia Decomposition and Hydrogen Purification Process Focusing on Ammonia Decomposition Rate)

  • 조대명;박종화;유돈상
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.594-600
    • /
    • 2023
  • In this study, a process model and optimization design direction for a hydrogen production plant through ammonia decomposition are presented. If the reactor decomposition rate is designed to approach 100%, the amount of catalyst increases and the devices that make up the entire system also have a large design capacity. However, if the characteristics of the hydrogen regeneration process are reflected in the design of the reactor, it becomes possible to satisfy the total flow rate of fuel gas with the discharged tail gas flow rate. Analyzing the plant process simulation results, it was confirmed that when an appropriate decomposition rate is maintained in the reactor, the phenomenon of excess or shortage of fuel gas disappears. In addition, it became possible to reduce the amount of catalyst required and design the optimized capacity of the relevant processes.

신 흡수제(KoSol-5)를 적용한 0.1 MW급 Test Bed CO2 포집 성능시험 (0.1 MW Test Bed CO2 Capture Studies with New Absorbent (KoSol-5))

  • 이정현;김범주;신수현;곽노상;이동욱;이지현;심재구
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.391-396
    • /
    • 2016
  • 한전 전력연구원에서 개발한 고효율 아민계 습식 $CO_2$ 흡수제(KoSol-5)를 적용하여 0.1 MW급 Test Bed $CO_2$ 포집 성능시험을 수행하였다. 500 MW급 석탄화력발전소에서 발생되는 연소 배가스를 적용하여 하루 2톤의 $CO_2$를 처리할 수 있는 연소 후 $CO_2$ 포집기술의 성능을 확인하였으며 또한 국내에서는 유일하게 재생에너지 소비량을 실험적으로 측정함으로써 KoSol-5 흡수제의 성능에 대한 신뢰성 있는 데이터를 제시하고자 하였다. 그리고 주요 공정변수 운전 및 흡수탑 인터쿨링 효율 향상에 따른 에너지 저감 효과를 테스트하였다. 흡수탑에서의 $CO_2$ 제거율은 국제에너지기구 산하 온실가스 프로그램(IEA-GHG)에서 제시하는 $CO_2$ 포집기술 성능평가 기준치($CO_2$ 제거율: 90%)를 안정적으로 유지하였다. 또한 흡수제(KoSol-5)의 재생을 위한 스팀 사용량(재생에너지)은 $2.95GJ/tonCO_2$가 소비되는 것으로 산출되었는데 이는 기존 상용 흡수제(MEA, Monoethanol amine)의 평균 재생에너지 수준(약 $4.0GJ/tonCO_2$) 대비 약 26% 저감 된 수치이다. 본 연구를 통해 한전 전력연구원에서 개발한 KoSol-5 흡수제 및 $CO_2$ 포집 공정의 우수한 $CO_2$ 포집 성능을 확인할 수 있었고, 향후 본 연구에서 성능이 확인된 고효율 흡수제(KoSol-5)를 실증급 $CO_2$ 포집플랜트에 적용할 경우 $CO_2$ 포집비용을 크게 낮출 수 있을 것으로 기대된다.