Recentadvancesin '-omics ' technologies enable us to discover more diverse disease- relevant target proteins, which encourages us to find out more target-specific novel lead compounds as new drug candidates. Therefore, high-throughput screening (HTS) becomes an essential tool in this area. Among many HTS tools, in silico HTS is a very fast and cost-effective tool to try to derive a new lead compound for any new targets, especially when the target protein structures are known or readily modeled. (omitted)
International Journal of Computer Science & Network Security
/
v.21
no.11
/
pp.312-320
/
2021
Increase in computational cost and exhaustive search can lead to more complexity and computational energy. Thus, there is need for effective and efficient scheme to reduce the complexity to achieve optimal energy utilization. This will improve the energy efficiency and enhance the proficiency in terms of the resources needed to achieve convergence. This paper primarily focuses on the development of hybrid swarm intelligence scheme for reducing the computational complexity in binary optimization. In order to reduce the complexity, both artificial bee colony (ABC) and particle swarm optimization (PSO) have been employed to effectively minimize the exhaustive search and increase convergence. First, a new approach using ABC and PSO has been proposed and developed to solve the binary optimization problem. Second, the scout for good quality food sources is accomplished through the deployment of PSO in order to optimally search and explore the best source. Extensive experimental simulations conducted have demonstrate that the proposed scheme outperforms the ABC approaches for reducing complexity and energy consumption in terms of convergence, search and error minimization performance measures.
Adenosine kinase (AK) is a ubiquitous intracellular enzyme, which catalyzes the phosphorylation of adenosine (ADO) to adenosine monophosphate (AMP). AK inhibitors have therapeutic potential as analgesic and antiinflammatory agents. A chemical feature based pharmacophore model has been generated from known AK inhibitors (26 training set compounds) by HypoGen module implemented in CATALYST software. The top ranked hypothesis (Hypo1) contained four features of two hydrogen-bond acceptors (HBA) and two hydrophobic aromatics (Z). Hypo1 was validated by 124 test set molecules with a correlation coefficient of 0.905 between experimental and estimated activity. It was also validated by CatScramble method. Thus, the Hypo1 was exploited for searching new lead compounds over 238,819 chemical compounds in NCI database and then the selected compounds were screened based on restriction estimated activity and Lipinski's rules to evaluate their drug-like properties. Finally we could obtain 72 new lead candidates and the two best compound structures from them were posted.
The purpose of this study is to investigate recognition degree and acceptability of fashion trends of new consumers who live in digital era, and to determine how these factors have influence on their use of fashion trend information. The study was conducted with 696 people from 15 to 34 years old. A self-administrated questionnaire based on the results of previous researches was developed. The data were analyzed with statistical analyses such as frequency analysis, mean, factor analysis, t-test, ANOVA, correlation and regression analysis. The results are as follows: first, new digital consumer's recognition degree (RD) of fashion trends is 7.85 on the average, given that the top of scale is 20.0, it is quite low. Of fashion trend RD, fashion item RD is the highest. The female subjects recognize fashion trends better than the male subjects. Second, fashion trend acceptance of new digital generation is classified into 5 factors: 'search acceptance', 'lead acceptance', 'follow acceptance', 'non-acceptance', and 'delay acceptance'. The female subjects show higher degree in the factors of 'search acceptance', 'lead acceptance' and 'follow acceptance' of fashion trend than the males; hence it means that the females have more positive attitudes in fashion trend acceptance than the males. Third, there are significant differences between genders in the fashion information utilization. Compared to the males, the females more use fashion information on style, fabrics and color. Concludingly, their fashion trend recognition degree and acceptance made an influence in part on their utilization of fashion information.
The A* algorithm is a well-known pathfinding algorithm. However, if the information about obstacles is not exploited, the algorithm may collide with obstacles or lead into swamp areas unnecessarily. In this paper, we propose new heuristic functions using the information of obstacles to avoid them or swamp areas. It takes time to process the information of obstacles before starting pathfinding, but it may not cause any problems most of cases because it is not processed in real time. We showed that the proposed methods could reduce the search space effectively through experiments. Furthermore, we showed that heuristic functions using obstacle information could reduce the search space effectively without processing obstacle information at all.
The pharmaceutical industry has an ongoing need for new, safe medicines with genuine biomedical effects. Most of the candidate molecules are far from becomes a drug, because of their pharmacokinetic and pharmacodynamic properties. The introduction of bioisostere to improve properties of molecules and to obtain new class of compound is currently increased. Silicon substitution of carbon of existing drugs is an attractive strategy to search a new candidate with improved biological and physicochemical properties. The fundamental differences between carbon and silicon can lead to improved profile of the silicon containing candidate, and could be exploited to get further benefit in drug design process.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.4
/
pp.317-322
/
2002
The major operations of Evolutionary Computation include crossover, mutation, competition and selection. Although selection does not create new individuals like crossover or mutation, a poor selection mechanism may lead to problems such as taking a long time to reach an optimal solution or even not finding it at all. In view of this, this paper proposes a hybrid Evolutionary Programming (EP) algorithm that exhibits a strong capability to move toward the global optimum even when stuck at a local minimum using a synergistic combination of the following three basic ideas. First, a "local selection" technique is used in conjunction with the normal tournament selection to help escape from a local minimum. Second, the mutation step has been improved with respect to the Fast Evolutionary Programming technique previously developed in our research group. Finally, the crossover and mutation operations of the Genetic Algorithm have been added as a parallel independent branch of the search operation of an EP to enhance search diversity.
The Transactions of the Korean Institute of Electrical Engineers A
/
v.50
no.11
/
pp.520-527
/
2001
This paper suggests a new methodology of evolutionary computations - an Adaptive Evolutionary Algorithm (AEA) for solving the Economic Load Dispatch (ELD) problem which has piecewise quadratic cost functions and prohibited operating zones with many local minima. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and the population by ES are adaptively modulated according to the fitness. Case studies illustrate the superiority of the proposed methods to existing conventional methods in power generation cost and computation time. The results demonstrate that the AEA can be applied successfully in the solution of ELD with piecewise quadratic cost functions and prohibited operating zones
Proceedings of the Korean Society of Applied Pharmacology
/
1998.11a
/
pp.34-37
/
1998
Combinatorial chemistry is one of the most interested topics in the area of drug discovery. One of the most important points is how to find a lead compound that gives the seed structure for designing of a combinatorial library. Natural products is suitable for searching a new bioactive compound with new structure. We have carried out systematic screening works to find natural products possessing the effects on inter-and intra-cellular signaling. Two hundreds extracts of medical plants and two thousands microbial culture broth samples have been tested for the induction and inhibition of IL-2 or IL-6 production (Fig. 1). ELISA is an efficient method for screenings from such a large number of samples. Now, we apply this method to search prion- binding agents.
Proceedings of the Korea Society for Simulation Conference
/
1999.10a
/
pp.75-80
/
1999
This paper presents a new method to find a optimal solution for stochastic system. This method uses Genetic Algorithm(GA) and simulation. GA is used to search for new alternative and simulation is used to evaluate alternative. The stochastic system has one or more random variables as inputs. Random inputs lead to random outputs. Since the outputs are random, they can be considered only as estimates of the true characteristics of they system. These estimates could greatly differ from the corresponding real characteristics for the system. We need multiple replications to get reliable information on the system. And we have to analyze output data to get a optimal solution. It requires too much computation to be practical. We address the problem of reducing computation. The procedure on this paper use GA character, an iterative process, to reduce the number of replications. The same chromosomes could exit in post and present generation. Computation can be reduced by using the information of the same chromosomes which exist in post and present current generation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.